КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В ПЕТРОХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ

<mark>АКАДЕМИЯ НАУК СССР КАРЕЛЬСКИЙ ФИЛИАЛ ИНСТИТУТ ГЕОЛОГИИ</mark>

Труды

Выпуск 26

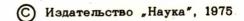
КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В ПЕТРОХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ

ИЗДАТЕЛЬСТВО «НАУКА» Ленинградское отделение ЛЕНИНГРАД • 1975

УДК 519.24+550.42+552.32.321.6

Корреляционный анализ в петрохимических исследованиях. Труды Института геологии Карельского филиала АН СССР, вып.26, изд-во "Наука", Ленингр. отд., Л., 1975, 'стр. 1-94.

Применение математико-статистических методов (корреляционный и регрессионный анализ) при изучении вещественного состава докембрийских массивов серпентинитов позволило найти некоторые новые геохимические закономерности распределения петрогенных и рудогенных компонентов. В процессе изучения использовалось вычисление основных статистик и некоторых вспомогательных величин по алгоритму, автоматизирующему необходимые операции на ЭЦВМ "Минск-22". Алгоритмы и программы могут быть использованы при аналогичных петрохимических исследованиях в других районах. Рис. - 3, табл. - 5, библ. - 54 назв.


Авторы:

К.И.Хейсканен, В.Д.Слюсарев, В.Л.Файнберг, О.Л.Рукосуева, Ж.М.Стуйгуева

Редакционная коллегия: В.А.Соколов (председатель), Б.Я.Алексеев, Г.С.Бискэ, А.И.Богачев, А.С.Пекки, В.И.Робонен, М.А.Елисеев (секретарь)

Ответственный редактор В.С.Куликов

K 20805-543 055 (02)-75 206-75

ПРЕДИСЛОВИЕ

В геологических исспедованиях в последнее время все шире применяются разнообразные математико-статистические методы. В связи с этим ощущается необходимость в издании таких руко-водств по применению отдельных математико-статистических методов, с помощью которых можно было бы получить обоснованные геологические выводы. Такое руководство, по-видимому, должно содержать рекомендации по всем этапам работы, начиная с постановки задачи и сбора материала и кончая машинным решением по соответствующему алгоритму и выяснением геологического смысла получаемых результатов. В соответствии с этими положениями данная работа включает: а) постановку геологической задачи; б) характеристику используемого метода; в) конкретный геологический пример; г) программы для выполнения необходимых расчетов на ЭЦВМ.

Настоящая работа ориентируется на самое общее знакомство читателя со статистическими понятиями и терминологией. Авторы пытались выдерживать параплельно как статистическую терминологию, так и соответствующие ей в определенных случаях геологические понятия, для того чтобы облегчить обращение к математико-статистической литературе. Данная работа ни в коей мере не
претендует на роль всеобъемлющего пособия по затрагиваемым методам. Ее задача заключается в том, чтобы показать способы
применения простейших методов математико-статистического анализа эмпирических данных и их геологическую интерпретацию на конкретном примере.

Глава 1

ПОСТАНОВКА ЗАДАЧИ И СВЕДЕНИЯ О МЕТОДИКЕ РАБОТЫ

Одной из важнейших составных частей любого петрохимического исследования, направленного в конечном итоге на решение метаплогенических задач, является анализ парагенезисов породообразующих и рудообразующих элементов. В этой связи большое значение приобретают математические методы, позволяющие численно
оценивать силу связи между компонентами пород и получать аналитические выражения зависимостей, извлекая при этом максимум
информации из имеющихся данных о вещественном составе геологических образований.

Ниже излагаются алгоритмы вычисления и принципы геологического использования ряда статистик, известных по общирной математико-статистической литературе, из которой наиболее полными можно считать работы Г. Крамера (1948), Хальда (1956), Т. Андерсона (1963). Функции распределения статистик, необходимые при проверке гипотез, в наиболее полном виде содержатся в таблицах Л.Н. Большева и А.В. Смирнова (1965). Многочисленные применения отдельных статистик коррепяционного анализа в геологических целях даны А.Б. Вистелиусом (1948, 1956, 1963 и др.), который впервые ввел их в практику геологических исследований, а также Ф. Чейзом (Chayes, 1960, 1962).

В задачу данной работы не входит полный обзор истории развития и применения корреляционного анализа. Здесь излагаются только те сведения, которые необходимы для понимания и применения рекомендуемого метода.

Объектом изучения при корреляционном анализе являются результаты выборочного опробования исследуемого геологического образования, которое в генетическом отношении должно считаться единым целым. Копичество химических анализов одного объекта заранее не может быть определено, однако оптимальная цифра, учитывая стоимость анализов и необходимость достижения рационального уровня значимости статистик, находится в пределах 30-50.

Большинство применяемых в дальнейшем статистик предполагает нормальность закона распределения изучаемых величин (содержаний химических элементов). Поэтому, несмотря на многочиспенные свидетельства в пользу нормальности распределения породообразующих и погнормальности малых элементов, это положение необходимо каждый раз проверять. В первом приближении можно ограничиться построением гистограмм распределения элементов и нанесением эмпирических функций распределения на вероятностную бумагу. Симметричность гистограмм в первом и близость точек к прямой во втором случае указывают на приближение к нормальному закону. Эти и ряд более точных методов проверки гипотез относительно функций распределения изложены во многих руководствах.

Важным вопросом коррепяционного анапиза является устранение впияния процентного пересчета на выявляемые связи между элементами. Как известно (Сарманов, Вистелиус, 1959; Сарманов, 1961, 1963), постоянство суммы переменных приводит к появлению ложной коррепяции между ними. В настоящее время имеется много работ по этому спожному вопросу (Chayes, 1960, 1962 и др.). Здесь используем лишь наиболее обоснованные и простые рекомендации, касающиеся изучения объектов эндогенного характера. В случае таких объектов освободиться от влияния процентного пересчета позволяет переход к киспородным отношениям, основанный на известном принципе Т. Барта. Сущность этой процедуры заключается в определении по данным химического анализа содержания киспорода в атомных количествах. В дальнейшем оперируют отношениями атомных количеств элементов к атомному количеству киспорода (см. приложение 1). В последующем изложении под элементами неизменно подразумеваются соответствующие им величины киспородных отношений, за исключением малых элементов, таких как Ni , Co , Cu и др., которые участвуют в вычислениях непосредственно в виде весовых содержаний метаплической фазы, окиспов или сульфидов. Влияние их на величину связей пренебрежимо мало (Вистепиус, 1963).

После получения однородной в генетическом смысле независимой выборки в виде совокупности химических анапизов какого-либо геологического эндогенного образования, освобождения от влияния процентного пересчета путем перехода к кислородным отношениям и проверки нормальности полученных величин приступают непосредственно к корреляционному (включая в это понятие и органически связанные с корреляциями регрессии) анапизу. В частности, вычисляются оценки спедующих характеристик: 1) информационный коэф-

фициент корреляции; 2) корреляционное отношение; 3) парные (общие) коэффициенты корреляции; 4) оценки значимости корреляционного отношения и парных коэффициентов корреляции, показатель формы связи; 5) определитель матрицы парных коэффициентов корреляции; 6) коэффициенты множественной регрессии и критерии их значимости; 7) частные коэффициенты корреляции; 8) множественные коэффициенты корреляции и критерии их значимости.

Ниже более подробно рассматриваются алгоритмы вычисления и геологическое значение всех перечисленных показателей.

§ 1. ИНФОРМАЦИОННЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Еспи при оценке силы связи между некоторыми переменными необходимо получить сведения о влиянии одной из них на другую, независимо от формы связи (непинейная или более сложная) и закона их распределения, то наилучшей оценкой тесноты связи является информационный коэффициент коррепяции. Использование информационного коэффициента коррепяции в геологических целях впервые осуществлено А.Б. Вистепиусом (1964). Изложение вычисления и особенностей применения информационного коэффициента корреляции имеются также в работе А.Б. Вистепиуса (Vistelius, 1967), что позволяет не останавливаться на деталях. Вычисление основывается на определении количества информации Н (X, Y) как разности между неопределенностью наблюдений над величиной Х до и после наблюдений над величиной У:

$$I(X,Y) = H(X) - H(X,Y).$$

Еспи результаты совместных наблюдений над X и У записывать как x_1 ,..., x_n , y_1 ,..., y_n (n - число наблюдений), то статистика копичества информации выражается в виде

$$\hat{I}(X,Y) = \sum_{i,j} p(x_i, y_i) \ln \frac{p(x_i, y_i)}{p(x_i)p(y_i)}, \qquad (1)$$

где p (x, y) — частости совместной эмпирической функции распределения X и Y ; p (x_i) и p (y_i) — частости одномерных эмпирических функций распределения X и Y .

Оценку информационного коэффициента корреляции находим по формуле

$$\hat{\rho} = 1 - e^{-2\hat{I}(X,Y)} \tag{2}$$

Очевидно, что $\hat{\rho}$ изменяется от 0 до 1, достигая последней только в случае функциональной зависимости между χ и У. При этом очень важно то, что на величину $\hat{\rho}$ не влияют ни форма связи, ни закон распределения переменных χ и У.

В последнее время установлено (Vistelius, 1967), что (1) дает смещенную оценку количества информации. Величина смещения

составляет

$$\frac{m \cdot n}{N}$$
,

где m , n - количество строк и столбцов матрицы, используемой при расчете количества информации; N - общее число наблюдений (анализов).

Полагаем, что оценку информационного коэффициента коррепяции рационально использовать для выявления связей, подлежащих дальнейшему изучению, а также для контроля других мер связи, таких как коэффициенты коррепяции, коррепяционное отношение, которые по абсолютной величине не могут превышать ее.

Программа расчета информационных коэффициентов коррепяции (см. приложение 1) использовалась для вычисления их оценок по данным полуколичественного спектрального анализа, интервальные величины которого пронумерованы в возрастающем порядке (полученные номера при этом имеют распределение, близкое к нормальному в связи с логнормальным законом распределения малых элементов и степенным характером шкалы полуколичественного метода). Таким образом, содержания элементов выражались в виде чисел: 0, 1, 2, 3, ..., 10. Для промежуточных значений допускаются величины 0.5, 1.5, ..., 9.5.

Качественные признаки, пронумерованные в соответствии со шкалой 0, 0.5, 1; 0, 1.5, ..., 10, также могут быть использованы для расчета оценок информационного коэффициента корреляции. Количественные величины используются непосредственно.

§ 2. ЭМПИРИЧЕСКОЕ КОРРЕЛЯЦИОННОЕ ОТНОШЕНИЕ

Коррепяционное отношение позволяет оценивать силу связи независимо от того, является ли она линейной или нелинейной. В этом отношении оценка близка информационному коэффициенту корреляции, однако более сложные зависимости анализировать с ее помощью невозможно.

В отличие от всех других статистик связи корреляционное отношение не вытекает из законов или других характеристик распределения и носит эмпирический характер. Оценка эначимости коррепяционного отношения также является в большой мере искусственной. Тем не менее использование этой статистики с известной предосторожностью может быть полезным.

Эмпирическое коррепяционное отношение величин ζ и ξ

$$\eta_{\zeta/\xi}^2 = \frac{\delta_i^2}{s^2}$$

измеряет отношение доли дисперсии ζ , обусловленной влиянием ξ (δ_i^s), к общей дисперсии ζ (s^s):

$$s^{2} = \frac{1}{N} \sum_{i=1}^{N} (\zeta_{i} - \bar{\zeta})^{2}, \delta^{2} = \frac{1}{k} \sum_{j=1}^{k} (\bar{\zeta}_{i} - \bar{\zeta})^{2},$$

где ζ_i — численные величины ζ , получаемые при наблюдениях; $\bar{\zeta}_j$ — средние значения φ по N наблюдениям; $\bar{\zeta}_j$ — средние значения φ в каждом из k интервапов области изменения ξ .

Корреляционное отношение η изменяется от 0 до 1, причем η = 0 означает отсутствие связи между ζ и ξ , а η = 1 возможно лишь при наличии функциональной зависимости

$$\zeta = f(\xi)$$
.

В случае пинейной формы связи между ζ и ξ корреляционное отношение совпадает по абсолютной величине с общим (парным) коэффициентом корреляции

а в общем случае превышает значение последнего. Этот факт лежит в основе проверки связи (см. § 4).

Таким образом, с помощью оценки коррепяционного отношения геолог может устанавливать зависимость между величинами (содержаниями элементов и пр.) даже в том случае, если она отклоняется от прямой. Кроме того, две величины $\eta_{\xi/\xi}$, характеризующая зависимость ζ от ξ , и $\eta_{\xi/\zeta}$, измеряющая степень влияния ζ на ξ , могут использоваться для выяснения причинных зависимостей и направленности процессов, приведших к формированию анализируемой системы.

§ 3. ПАРНЫЕ (ОБЩИЕ) КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ

Наиболее широко используемой мерой связи между случайными величинами ξ_1 и ξ_2 является парный или общий коэффициент корреляции ρ . К числу его достоинств, помимо простоты вычисления оценок, следует отнести и то, что для нормально распределенных величин коэффициент корреляции наряду со средними и дисперсиями полностью определяет совместную функцию распределения этих величин.

Оценка коэффициента корреляции для величин ξ_1 и ξ_2 вычиспяется по формуле

$$r_{12} = \frac{\sum_{j=1}^{N} (\xi_{1j} - \bar{\xi}_{1})(\xi_{2j} - \bar{\xi}_{2})}{\sqrt{\sum_{j=1}^{N} (\xi_{1j} - \bar{\xi}_{1})^{2} \sum_{j=1}^{N} (\xi_{2j} - \bar{\xi}_{2})^{2}}}, i, j = 1, ..., N,$$

где N — число наблюдений (анализов); ξ_{1j} , ξ_{2j} — величины переменных (содержания элементов), полученные при наблюдениях (химических анализах); ξ_1 и ξ_2 — средние величины:

$$\bar{\xi}_1 = \frac{1}{N} \sum_{j=1}^{N} \xi_{1j}$$
, $\bar{\xi}_2 = \frac{1}{N} \sum_{j=1}^{N} \xi_{2j}$.

Суммы, находящиеся в знаменателе под знаком корня, соответству-

$$s_i^2 = \frac{1}{N-1} \sum_{j=1}^{N} (\xi_{ij} - \bar{\xi}_i)^2, \quad i = 1 = 2, j = 1, 2, ..., N$$

В числителе находится выражение, соответствующее ковариации Е, и Е:

$$\lambda_{12} = \frac{1}{N-1} \sum_{j=1}^{N} (\xi_{1j} - \bar{\xi}_1)(\xi_{2j} - \bar{\xi}_2).$$

Таким образом, оценка коэффициента коррепяции может быть найдена как

$$r_{12} = \frac{\lambda_{12}}{s_1 s_2} .$$

Коэффициент корреляции изменяется в пределах -1 < ρ < +1. Линейной функциональной связи между величинами соответствует

абсолютное значение $|\rho|=1$, полному отсутствию корреляционной зависимости отвечает $\rho=0$. Знак коэффициента указывает направление связи (прямая, обратная).

Спедует заметить, что оценки парного коэффициента коррепяции, вычисленные для величин, отклоняющихся от нормального закона распределения или при нелинейных зависимостях между ними, не отражают в полной мере связь между величинами, что ведет к потере информации и ложным выводам при отсутствии контроля этих явлений.

При изучении магматических или метаморфических образований парные коэффициенты корреляции используются для нахождения общих геохимических особенностей, когда соотношения между элементами рассматриваются без учета влияния на них со стороны других химических компонентов породы.

§ 4. ОЦЕНКИ ЗНАЧИМОСТИ КОРРЕЛЯЦИОННОГО ОТНОШЕНИЯ И КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ. КРИТЕРИЙ ЛИНЕЙНОСТИ СВЯЗИ

Оценки параметров выборочной совокупности (совокупность отобранных проб), являющиеся случайными величинами, отпичаются от оцениваемых ими параметров генеральной совокупности (опробованного геологического образования), которые предполагаются постоянными и не зависящими от результатов наблюдений (опробования). Суждения о последних, высказанные в виде определенных гипотез, могут быть проверены. Причем гипотеза принимается или отвергается с определенной вероятностью. Вероятность ошибки стремятся свести к вепичине, малой настолько, что ею без ущерба для выводов можно пренебречь.

Например, вычисленная оценка коэффициента корреляции г (§ 3) сама по себе еще не дает оснований для суждения о напичии или отсутствии связи. Однако если нулевая гипотеза о равенстве коэффициента корреляции нулю (корреляционная зависимость отсутствует)

$$H_0: \rho = 0$$

будет отвергнута, то с определенной уверенностью можно говорить о наличии между величинами связи, сила которой измеряется величиной \boldsymbol{r} .

Приближенный способ проверки гипотезы $H_0: \rho = 0$ сводится к следующему. Находят оценку дисперсии корфициента коррепяции

$$s_r = \sqrt{\frac{1-r^2}{N-3}}$$

и значение величины

$$t = \frac{r}{s_r}$$

Распределение t близко к закону распределения Стьюдента с v = N-2 степенями свободы, табулированное в указанных выше руководствах. Находим для данного v и уровня значимости p табличное значение t_v (p). Уровень значимости p выбирается таким образом, чтобы вероятность отвергнуть проверяемую гипотезу, когда она верна, не превышала q = 1-p. Обычные значения q составляют 0.05 и 0.01 (соответственно говорят о 95 или 99%—ных уровнях значимости).

Таким образом, если вычисленное значение

$$t > t_v(p)$$
,

то говорят, что нупевая гипотеза отвергается, т.е. вычисленное значение r с вероятностью p отражает наличие линейной зависимости. При большом числе подобных проверок ошибочный вывод будет сделан не более чем в q · 100% всех случаев.

Более точная проверка гипотезы H_0 осуществляется по табпицам, основанным на точной функции распределения r, в которых для данных v = N-2 и p табулированы значения r_v (p), такие, что в случае

$$r > r_v(p)$$

гипотеза H_0 : $\rho = 0$ отвергается; r_v (p) соответствует точному распределению выборочного коэффициента корреляции r .

В случае

$$r \leq_{\mathcal{V}} (p)$$

говорят, что гипотеза H_0 : $\rho = 0$ не отвергается или что результат вычисления r не противоречит проверяемой гипотезе. При этом величина r является незначимой и для данной выборки не дает возможности судить о наличии связи.

Аналогичным образом определяется значимость эмпирического корреляционного отношения η . Вычисляются величины

$$s_{\eta} = \sqrt{\frac{1-\eta^2}{N-2}}, \qquad t = \frac{\eta}{s_{\eta}}.$$

В таблицах распределения Стьюдента для v = N-2 степеней свободы и $p \cdot 100\%$ уровня значимости находят t_y (p), с помощью которого проверяется нулевая гипотеза. В случае принятия гипотезы связь считается неустановленной. Если же гипотеза не принимается, то с вероятностью p утверждают о наличии связи (в том числе и нелинейной) между анализируемыми переменными.

Мера пинейной корреляционной зависимости г и мера л, отражающая наличие без разделения как линейной, так и нелинейной зависимостей, использ уются для построения критерия линейности Блекмана, схему вычисления которого можно найти в работе H.A. Плохинского (1961):

$$t_k = \frac{K}{m_k} ,$$

где

$$K = \eta^2 - r^2$$
, $m_k = \frac{s_k}{\sqrt{N}}$, $s_k = 2\sqrt{K - K^2(2 - \eta^2 - r^2)}$.

В дальнейшем нупевую гипотезу об отсутствии нелинейности $H_0: K=0$ проверяют с помощью t_k в соответствии с ранее изложенными примерами. Обычно, даже не пользуясь таблицами, можно утверждать, что при $t_k \geqslant 3$ связь не может считаться линейной.

§ 5. ОПРЕДЕЛИТЕЛЬ МАТРИЦЫ ПАРНЫХ КОЭФФИЦИЕНТОВ КОРРЕЛЯЦИИ

Результаты химического анализа образца породы можно рассматривать как наблюдение над n -мерной случайной величиной $\mathcal X$, которое записывается в виде вектора (ξ_1 , ξ_2 , ..., ξ_i , ..., ξ_n), где n - количество компонентов химического состава породы. В этом случае парные коэффициенты корреляции между компонентами породы ξ_i удобно располагать в виде матрицы

$$R = \left\{r_{ij}\right\} = \begin{pmatrix} r_{11} & r_{12} & \dots & r_{1n} \\ r_{21} & r_{22} & \dots & r_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r_{n1} & r_{n2} & \dots & r_{nn} \end{pmatrix}, i, j = 1, \dots, n,$$

которой соответствует матрица ковариаций (§ 3)

$$\Lambda = \{\lambda_{ij}\}, \quad i,j = 1,..., \quad n, \quad \lambda_{ij} = r_{ij} \quad s_i \quad s_j.$$

При этом $\lambda_{ij} = s_i^2$. Определитель R , записываемый как |R| , имеет в применении к геологическим объектам большое значение. Известно, что | R |

характеризует объем единичного эллипсоида, соответствующего функции распределения компонентов породы Е; , и изменяется в пределах 0 ≤ |R| ≤ 1. Если связи между компонентами породы отсутствуют, т.е. r_{ij} = 0 при $i \neq j$ и r_{ij} = 1, то |R| = 1. Если же все компоненты связаны функционально, т.е. r_{ij} = 1, то |R| = 0. Промежуточные значения | R | соответствуют напичию более или менее развитых стохастических связей.

В данном случае важно то, что для пород, образованных в равновесных условиях и характеризующихся малыми величинами [R], в случае напожения каких-то вторичных процессов, приводящих к общему ослаблению старых связей и проявлению новых, спедует ожидать увеличения | R | по сравнению с исходным состоянием. Разумеется, когда вторичные процессы полностью заменяют старые связи новыми и порода будет полностью соответствовать новой физико-химической обстановке, величина | Я | снова уменьшается. Опыт показывает, что некоторые реликтовые связи очень стойки, поэтому повышенные значения | Я почти всегда указывают на наличие нескольких эталов формирования изучаемого геологического объекта.

§ 6. КОЭФФИЦИЕНТЫ МНОЖЕСТВЕННОЙ РЕГРЕССИИ И КРИТЕРИИ ИХ ЗНАЧИМОСТИ

Зависимость одного из компонентов породы от других можно представить в виде уравнения

называемого уравнением множественной регрессии и позволяющего оценивать величину 5, по значениям остальных (п-1) компонентов породы.

Наилучшие в смысле минимума среднеквадратической ошибки оценки коэффициентов множественной регрессии отыскиваются через матрицы ковариаций или оценки дисперсий и матрицы коэффициентов корреляции. Коэффициенты для i -го уравнения, стоящие при j -й переменной (компоненте породы):

$$b_{ij} = \frac{-\Lambda_{ij}}{\Lambda_{ii}} = -\frac{s_i}{s_j} \cdot \frac{R_{ij}}{R_{ii}} ,$$

где Λ_{ij} и R_{ij} - алгебраические дополнения элементов λ_{ij} и r_{ij} в Λ и R соответственно. Точность работы уравнения множественной регрессии хара

Точность работы уравнения множественной регрессии характеризуется оценкой так называемой остаточной дисперсии, т.е. дисперсией величины

$$(\xi_i - \sum_{j=i}^n b_{ij} \xi_j), i, j = 1, ..., n, j \neq i,$$

которая может быть названа остатком от выражения ξ_i через остапьные компоненты породы.

Значимость коэффициентов множественной регрессии b_{ij} , т.е. проверка гипотезы \mathcal{H}_{θ} : b_{ij} = 0, устанавливается с помощью величины

$$t = \sqrt{N-n} = \frac{s_{1.234...n}}{s_{2.134...n}} b_{12},$$

где N — число наблюдений (анализов); n — число переменных (компонент породы); $s_{1.34...n}$, $s_{2.134...n}$ — оценки остаточных дисперсий, вычисляемые по формуле

$$s_{1.23...n}^2 = s_1^2 \frac{|R|}{R_{ii}}$$
,

 s_1^2 - оценка дисперсии ξ_1 .

Величина t при справедливости нупевой гипотезы распределена по закону Стьюдента с v = N-2-n степенями свободы. Гипотеза H_0 отвергается, если t > t, (p).

Таким образом, вычисляя уравнение множественной регрессии для элемента ξ , мы можем установить степень влияния на его содержание каждого из остальных ξ_2 , ..., ξ_n компонентов породы.

О сравнительной сипе впияния каждого из ξ_2 , ..., ξ_n эпе-ментов можно судить по коэффициентам множественной регрессии, выраженным в стандартизованном масштабе (Лукомский, 1961). Формула перехода от натурального к стандартизованному масштабу имеет вид:

$$b_{1j} = \dot{b}_{1j} \frac{s_1}{s_j}$$
, $\dot{b}_{1j} = b_{1j} \frac{s_j}{s_1}$,

где b_{ij} — коэффициент регрессии в натуральном масштабе; b_{ij} — коэффициент регрессии в стандартизованном масштабе; s_i^2 , s_i^2 оценки дисперсии.

Коэффициенты множественной регрессии b_j показывают, как изменялось бы среднее содержание элемента ξ_j в зависимости от содержания любого другого, если бы содержание остальных было постоянным. Уравнение множественной регрессии в натуральном масштабе может быть использовано для подсчета наиболее вероятного содержания любого компонента в изученных породах района на основе только химического анализа. При практическом использовании уравнения следует учитывать, что выше оно написано для центрированных величин, поэтому для непосредственных расчетов следует пользоваться уравнением

$$\xi_1 - \bar{\xi}_1 = b_{12}(\xi_2 - \bar{\xi}_2) + b_{13}(\xi_3 - \bar{\xi}_3) + \ldots + b_{1n}(\xi_n - \bar{\xi}_n)$$

где ξ_j - среднее значение переменной (компоненты породы по V наблюдениям - анализам).

§ 7. ЧАСТНЫЕ КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ

Парный коэффициент корреляции измеряет связь между двумя переменными вне зависимости ее от впияния других переменных (компонентов породы), т.е. видимую связь, поскольку в какой-то мере ее можно оценить и по широко распространенным в петрохимических исспедованиях двойным диаграммам. Крайне важно было бы, по-видимому, проспедить связь между величинами, такую, которая не была бы осложнена впиянием других составляющих рассматриваемой системы. Именно такую связь измеряет частный коэффициент корреляции, который в ранее использованных обозначениях выражается формулой

$$r_{12.34...n} = -\frac{\Lambda_{12}}{\sqrt{\Lambda_{11}\Lambda_{22}}} = -\frac{R_{12}}{\sqrt{R_{11}R_{22}}}$$

которая легко обобщается для любых переменных. Здесь первые два индекса, стоящие перед точкой, указывают переменные, связь между которыми изменяется, остальные индексы — переменные, влияние которых исключается.

Значимость частного коэффициента корреляции определяется точно так же, как и парного коэффициента корреляции, вычисленного по выборке объема N-k, где k — число исключенных переменных. Иначе говоря, при проверке гипотезы H_0 : ρ_{ij} : I_2 :...n = 0 число степеней свободы v = N-k -2.

Сравнение парных и частных коэффициентов корреляции позволяет выявлять связи "первичные" и "вторичные". Первичные связи обусловлены истинными геохимическими соотношениями элементов, вторичные – влиянием других компонентов породы. Первичным связям соответствуют практически одинаковые значения парного и частного коэффициентов корреляции, вторичным – разные.

§ 8. МНОЖЕСТВЕННЫЙ КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ

Степень зависимости одной переменной от остальных, выра-жающуюся в точности работы уравнения множественной регрессии, измеряют обычно не оценкой остаточной дисперсии $s_{1,23...n}$, а статистикой множественного коэффициента коррепяции $r_{1(2...n)}$, который может вычисляться по формуле

$$r_{1(2...n)}^{2} = \frac{s_{1}^{2} - s_{1,23...n}^{2}}{s_{1}^{2}} = 1 - \frac{\Lambda}{\lambda_{11} \Lambda_{11}} = 1 - \frac{|R|}{R_{11}}, \ 0 \le r_{1(2...n)} \le 1.$$

Проверка гипотезы $H_0: \rho_{1(2...n)} = 0$ осуществляется с помощью величины

$$F = \frac{N-n}{n-1} \cdot \frac{r_{1(2...n)}^2}{1-r_{1(2...n)}^2},$$

которая при справедливости нулевой гипотезы об отсутствии зависимости ξ_1 от остальных компонент породы подчиняется F -распределению Фишера с ν_1 = n -1 и ν_2 = N - n степенями свободы. Гипотеза H_0 отвергается, если $F > F_{\nu_1 \nu_2}$ (p), найденного в соответствующих таблицах.

Сравнивая между собой значения множественного коэффициента корреляции для всех ξ_i , можно сделать очень важные выводы о характере системы. Если все $r_{i(1...n)}$ близки к 1, то, очевидно, каждый компонент породы почти полностью определяется остальными, т.е. порода образовалась в условиях закрытой равновесной системы. Если же $r_{i(1...n)}$ отпичаются от 1 по крайней мере для некоторых элементов химического состава, спедует предположить наличие дополнительных причин, контролировавших образование породы. В этом случае система не может считаться закрытой.

Таким образом, мы рассмотрели статистики корреляционного анализа, применение которых к изучению результатов выборочного опробования позволяет количественно оценивать взаимоотношения между компонентами пород. Достоинства данного метода по сравнению с обычными петрохимическими построениями, пересчетами и коэффициентами заключаются прежде всего в рассмотрении многокомпонентной природной системы в целом, в возможности изучения скрытых закономерностей и построения количественных критериев рудоносности. Спедует отметить, что изпоженными основами корреляционного анализа аналитические исследования выборочных данных далеко не исчерпываются. Существует много других, не менее полезных способов и методов, однако корреляционный анализявляется неотъемлемой частью любой подобной работы.

Рациональная последовательность изучения геологического объекта с помощью математических методов определяется в соответствии с диалектическими принципами процесса познания вообще: от общих геологических гипотез к выявлению частных закономерностей, а затем к решению поставленных задач, из которых вытекают новые общие гипотезы. Взаимодействие математических, геологических и прочих методов изучения складывается на основе взаимного контроля и проверки как в процессе постановки задач, так и их решения. Математико-статистические методы не являются самоцелью однако их использование позволяет геологу более эффективно решать различные задачи.

Рассмотрим конкретный пример применения коррепяционного анализа в геопогических исследованиях.

Глава II

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В ИЗУЧЕНИИ ГИПЕРБАЗИТОВОГО КОМПЛЕКСА РАЙОНА ВЕТРЕНОГО ПОЯСА

В синклинорной зоне Ветреного Пояса установлено два формационных типа ультрабазитов - гипербаз товый и габбро-перидотито. вый (Богачев и др., 1968; Слюсарев, 1967, 1968). Они различаются по химизму, петрографо-минерапогическим, минераграфическим, пет рохимическим особенностям и металлогенической специфике. Однако относительно процесса кристаллизации, направленности дифференциации и особенностей метаморфических процессов серпентинизации, характера установленных эмпирических закономерностей по распределению никеля, хрома и серы возникал целый ряд дискуссионных моментов. Решение этих вопросов требовало дополнительных исследований имеющегося фактического материала для извлечения максимума запоженной в нем информации. В качестве одного из: возможных путей дальнейшего решения интересующих нас вопросов был использован корреляционный анализ (общие, частные, сводные коэффициенты корреляции, определители матриц общих коэффициентов коррепяции, уравнения множественной регрессии, коррепяционные отношения).

В качестве примера рассмотрим один из указанных формационных типов, представленный в зоне Ветреного Пояса гипербазито вым комплексом.

§ 1. ХАРАКТЕРИСТИКА ГИПЕРБАЗИТОВОГО КОМПЛЕКСА

Апогарцбургитовые массивы гипербазитового комплекса образуют прерывистый пояс вдопь юго-за падной границы синклинорной зоны Ветреного Пояса и располагаются в краевых частях синклинальных структур. На основе термоанализа и рентгеноструктурных данных установлено, что интрузии спожены антигоритовыми серпентинитами, т.е. серпентинизация аллометаморфическая. Массивы пространственно сочетаются со спилито-диабазовым эффузивным комп-

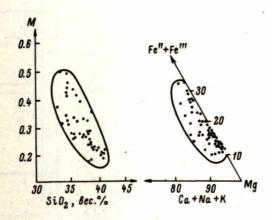


Рис. 1. Диаграмма Осборна (Osborn, 1959) и тройная диаграмма $Mg - (Fe'' + Fe''') - (C\alpha + N\alpha + K)$.

лексом и совмещены с зонами развития колчеданной минерапизации. Ниже пойдет речь о двух наиболее изученных массивах района озер Каросозеро и Пулозеро.

Направленность дифференциации. Бластопойкипитовые структуры, баститовые псевдоморфозы и высокомагнезиальный состав свидетельствуют о том, что порядок кристаплизации довольно прост (магнезиальный оливин, ортопироксен и, возможно, частично клинопироксен), и поэтому вероятной может быть тенденция Боуэна. Однако по данным вариационных диаграмм (рис. 1) направленность дифференциации весьме неопределенная. Судя по тройной диаграмме, следует ожидать обогащения остаточных продуктов железом при относительном постоянстве шелочей, т.е. тенденции Феннера или топеитовой направленности.

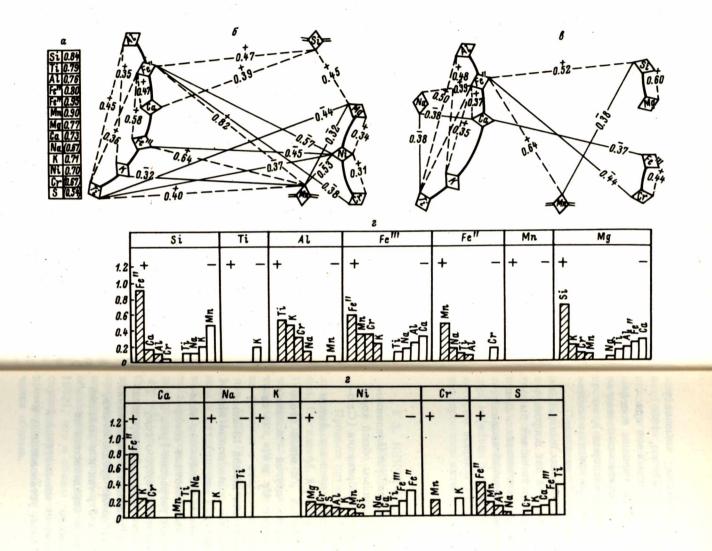


Рис. 2. Коррепяционные связи в серпентинитах гипербазитового комплекса (42 образца).

а — сводные коэффициенты корреляции, в скобки заключены не значимые коэффициенты (5%-й уровень значимости); б — общие (парные) коэффициенты корреляции (1%-й уровень значимости, $r_{12} > 0.393$; 5%-й уровень значимости, $r_{12} > 0.304$); в — частные коэффициенты корреляции (1%-й уровень значимости, $r_{12.3...k} > 0.456$; 5%-й уровень значимости, $r_{12.3...k} > 0.355$); г — коэффициенты множественной регрессии (5%-й уровень значимости).

Если сопоставить результаты по гипербазитовому комплексу с экспериментальными исследованиями Осборна (Osborn, 1959), в которых представлены два предельных случая фракционной кристаплизации (толеитовая тенденция при простоянном валовом составе, т.е. постоянное содержание кислорода, и известково-щелочная при постоянном P_{0_2} , т.е. переменное содержание кислорода), то можно убедиться в том, что наш случай выходит за пределы опытных данных, более всего приближаясь к толеитовой тенденции (рис. 1). Следовательно, только на основе вариационных диаграмм мы не в состоянии однозначно решить интересующий нас вопрос. Логично предположить, что подобная неопределенность может быть обусловлена аллометаморфическим процессом серпентинизации. Для проверки этого положения использовался корреляционный анализ.

§ 2. ОБЩИЕ РЕЗУЛЬТАТЫ СТАТИСТИЧЕСКОГО АНАЛИЗА

На рис. 2 приведены основные закономерности, установленные по значимым на 5%-м уровне статистикам. По данным общей коррепяции с использованием метода графического изображения (Слюсарев, 1968) установлено:

— наличие двух основных антагонистических групп элементов (1 — Mg , Ni , Cr ; 2 — Al , Fe'' , Fe''' , Ti , Ca , K), — двойственная природа связей Si и Mn ; Si , с одной сторо—

— двойственная природа связей Si и Mn; Si , с одной стороны, обнаруживает прямую связь с $Fe^{"}$, Ca , а с другой — положительную связь с Mg ; Mn отрицательно связан с Mg и Ni , но положительно с $Fe^{"}$, $Fe^{"}$ и Ti .

Корреляционные отношения, вычисленные для данной 13-компонентной системы, свидетельствуют о том, что подавляющее количество связей, несомненно, линейного характера (табл. 1).

Спедующая задача заключается в выяснении устойчивых независимых связей. Для этого рассмотрим сводные, частные коэффициенты коррепяции и уравнения множественной регрессии (рис. 2).

Сводные коэффициенты коррепяции свидетельствуют о том, что каждый из элементов рассматриваемой системы, за исключением $N\alpha$, Cr и S, в значительной степени определяется содержаниями остальных элементов. На этом основании можно предположить, что наблюдаемые концентрации как $N\alpha$, Cr и S, так и в меньшей степени остальных элементов в какой-то мере определяются не рассматриваемыми в данной системе причинами.

По данным частной корреляции и уравнений множественной регрессии, большинство корреляционных связей, установленных в

многокомпонентной системе (общая коррепяция), отражают действительные соотношения в парах элементов, не зависящие от влияния других. Устойчивые (первичные) связи, сохраняющиеся и в обшей и в частной коррепяциях, можно рассматривать как наиболее важные геохимические закономерности, отражающие особенности процесса кристаплизации, изоморфные соотношения и проявление наиболее существенных вторичных процессов.

Поскопьку мы имеем дело с однородной магнетит-антигоритовой породой, то можно ожидать связей, присущих как первичному перидотиту, так и возникающих в процессе серпентинизации. Для того чтобы выяснить, в какой степени сохраняются связи, характерные для первичного перидотита, и можно ли их обнаружить путем коррепяционного анапиза, учитывая при этом возможность объемных эффектов и изменение вещественного состава, рассмотрим некоторые вопросы химизма, изоморфизма и геохимические особенности процесса антигоритизации.

§ 3. НЕКОТОРЫЕ ОСОБЕННОСТИ ПРОЦЕССОВ СЕРПЕНТИНИЗАЦИИ

Процесс антигоритизации, как правило, связан с перекристалпизацией хризотиловых (автометаморфических) серпентинитов (Белов, Богидаева, 1962; Артемов, Кузнецова, 1966; Штейнберг и др., 1966; Wilkinson, 1953; Hess et al., 1952). Принято считать. что как авто- так и большей частью аппометаморфическая серпентинизация носят изохимический характер с сохранением постоянства главных и второстепенных компонентов (Бетехтин, 1953; Собопев, 1959; Штейнберг, 1960; Малахов, 1963; Штейнберг и др., 1966; Hostetler et al., 1965). Соотношения в химизме между хризотипом и антигоритом еще спабо исследованы, но существуют указания, что антигорит более богат Al , Fe" , Si . Так, экспериментальные исследования (Йодер, 1954) свидетельствуют о том, что для образования антигорита необходима добавка глинозема, причем Mg + Si в хризотиле замещается 2 Al (Roy and Roy, 1954). Отпичительной чертой антигорита является также несколько большее содержание кремнезема (Дир и др., 1966), на 1-2% выше по сравнению с хризотилом (Артемов, Кузнецова, 1966). На этом основании предполагается необходимость привноса кремнезема для образования антигоритов (Артемов, Кузнецова, 1966; Hess et al., 1952), что в общем согласуется с одним из возможных вариантов серпентинизации, требующим добавки, например к одивину, воды и кремнекислоты (Тернер, Ферхуген, 1961) при существенном увеличении объема.

Таблица 1 Корреляционные отношения и общие коэффициенты корреляции

								and the second second second second					
Компо-	Si	Ti	Al	Fe"	Fe"	Mn	Mg	Ca	Να	K	Ni	Cr	S
ненты	1,113	2,1 13	3,113	4,113	5,113	6,113	7,113	8, 1 13	9, 1 13	10, 1 13	11, 1 13	12, 1 13	13, 1 13
				.45	I	Коррепя	ционные	отношения	- T				
Si	1	0.34	0.11	(0.77)	0.67	0.53	0.48	0.36	0.14	0.17	0.37	0.45	0.12
Ti.	(0.95)	1	0.66	(0.65)	(0.73)	0.62	0.72	0.56	0.38	0.58	0.53	0.36	0.45
Al	0.38	0.61	1	0.42	0.45	0.35	0.52	0.58	0.51	0.64	0.51	0.49	0.48
Fe"	(0.96)	0.47	0.39	1	0.76	0.69	(0.68)	0.59	0.41	0.36	0.71	0.52	0.41
Fe"	(0.93)	0.59	0.43	0.67	1	0.86	(0.73)	0.56	0.38	0.40	0.72	0.51	0.30
Mn	0.59	0.54	0.42	0.77	0.87	1	0,52	0.36	0.37	0.43	0.75	0.55	0.38
Mg	(0.94)	0.65	0.58	(0.80)	(0.92)	(0.81)	1	(0.82)	0.34	0.35	0.65	0.35	0.29
Ca	0.66	0.38	0.39	0.54	0.51	0.31	0.60	1	0.28	0.43	0.56	0.45	0.34
Να	0.29	0.28	0.32	0.14	0.30	0.23	0.37	0.26	1	0,40	0.23	0.32	0.52
K	0.09	0.35	0.37	0.19	0.22	0.43	0.14	0.31	0.57	1	0.28	0.17	0.55
Ni	0.18	0.49	0.24	0.59	0.74	0.77	0.43	0.39	0.36	0.45	1	0.53	0.36
Cr	0.38	0.38	0.47	0,24	0.44	0.30	0.47	0.40	0.17	0.29	0.41	1	0.33
S	0.49	0.40	0.27	(0.66)	(0.66)	0.59	0.31	0.48	0.54	0.39	(0.61)	0.42	1
	Общие коэффициент						і фициенть	корреляци	u			1 *	
Si Ti Al Fe" Mn Mg Ca Na K Ni Cr	1 -0.09 -0.02 0.29 0.48 0.18 0.46 0.40 -0.06 -0.08 -0.13 -0.11 0.05	0.09 1 0.46 0.16 0.36 0.41 -0.45 0.13 -0.21 -0.22 -0.37 -0.13 -0.23	0.02 0.46 1 0.19 0.08 0.26 0.24 0.09 0.36 0.01 0.02	0.29 0.16 -0.14 1 0.58 0.64 -0.04 0.09 -0.22 -0.46 0.05 -0.05	0.48 0.36 0.19 0.58 1 0.83 -0.23 0.47 0.24 -0.15 -0.58 -0.39 0.18	0.18 0.41 0.08 0.64 0.83 1 -0.32 0.25 0.19 -0.33 -0.53 -0.53 -0.51 0.15	0.46 -0.45 -0.27 -0.04 -0.23 -0.32 1 -0.18 -0.05 -0.13 -0.35 -0.18 -0.03	0.40 0.13 0.24 0.04 0.47 0.25 -0.18 1 -0.11 0.09 -0.24 -0.17 0.02	-0.06 -0.21 -0.09 -0.09 -0.24 -0.05 -0.11 -1 -0.25 -0.07 -0.04 -0.27	0.08 0.22 0.36 0.22 -0.15 -0.33 0.13 0.09 0.25 1 0.25 -0.06 0.01	-0.13 -0.37 0.01 -0.46 -0.58 -0.53 0.35 -0.24 -0.07 0.25 1 0.31 0.09	-0.11 -0.13 0.02 0.05 -0.39 -0.21 0.18 -0.17 -0.04 -0.06 0.31 1 -0.14	0.05 -0.23 -0.01 -0.05 -0.18 -0.03 -0.03 -0.27 -0.01 -0.09 -0.14
		1				C	редние	значения	1	1	1	1	1
	0.2657	0.0006	0.0082	0.0439	0.0379	0.0010	0.3506	0.0076	0.0008	0.0002	0.2414	0.0010	0.0362
'	1					Станд	 артные	отклонени	я				ı
	0.0316	0.0005	0.0052	0,0205	0.0205	0.0005	0.0446	0.0116	0,0011	0.0002	0,1008	0.0010	0.0402
								-267 D A					

Примечание. Незначимые (5%-й уровень) корреляционные отношения чены в скобки.

и общие коэффициенты коррепяции подчеркнуты, криволинейные связи заклю-

Теоретические представления (Дир и др., 1966) и опытные данные по синтезу серпентинов (Roy and Roy,1954; Gillery, 1959) свидетельствуют о том, что наиболее обычными в минерапах являются изоморфные замещения типа $Si \longrightarrow Al$; $Mg + Si \longrightarrow 2Al$; $Mg \longrightarrow Al$, Fe'', Fe''', Ni.

В процессе серпентинизации вообще (Дир и др., 1966) и антигоритизации в особенности (Штейнберг и др., 1966) подавляющая часть железа не входит в серпентиниты, а выделяется в виде окислов. Для окислов обычным является изоморфизм $Fe^{\prime\prime\prime} - Cr^{\prime\prime\prime} - Al^{\prime\prime\prime}$ (Белов, Литвинская, 1966).

§ 4. ГЕНЕТИЧЕСКИЕ ВЫВОДЫ КОРРЕЛЯЦИОННОГО АНАЛИЗА

Обнаруженный антагонизм двух групп элементов в многоком-понентной системе (рис. 2), а также устойчивость таких из них, как положительная связь Si с Fe'', Ca; Al с Ti, K; Ca с Fe'', положительная связь Fe'' с Ti и отрицательная с Cr, а также трицательная связь Mg с Ti, свидетельствуют о том, что эти корреляционные зависимости (и, возможно, часть других) являются отражением магматического этапа кристаплизации. Действительно, судя по реликтам пойкилитовых структур, в процессе кристаплизации магнезиального оливина и хромшпинелидов (Mg, Cr, Ni) остаточный расплав обогащался элементами второй группы (Si, Fe'', Ca, Al, Ti, K).

Для окончательного вывода о направленности дифференциации спедует рассмотреть не соответствующую известным природным закономерностям устойчивую положительную связь Si с Mg. Она, несомненно, вторичного характера. Причем зависимость Si от Mg в многокомпонентной системе носит сложный криволинейный характер и близка к функциональной (корреляционное отношение $\eta = 0.94$, табл. 1), тогда как зависимость Mg от Si прямолинейна и значительно слабее (корреляционное отношение g = 0.48, табл. 1). Спедовательно, здесь уже явно выступает направленность процесса, т.е. зависимость содержаний Si от концентраций Mg в породе. Эти результаты хорошо согласуются с природными и экспериментальными данными о необходимости привноса некоторого количества кремнекислоты в проиессе аплометаморфической антигоритизации, а также возможный частичный привнос-вынос других элементов, как считают отдельные исследователи (Thayer, 1968).

Таким образом, наиболее вероятной, если рассматривать в плане вариационных диаграмм, направленностью дифференциации

является промежуточная между тенденцией Боуэна и Феннера, а диагональное положение поля гипербазитов по отношению к координатным осям следует, видимо, считать отпичительной чертой именно антигоритовых разновидностей гипербазитового комплекса в изученном районе. К этому спедует добавить, что рассмотрение направленности дифференциации только на основе ограниченных вариационных диаграмм является весьма грубым приближением и не всегда соответствует действительности, особенно для глубокометаморфизованных пород.

§ 5. МЕТАЛЛОГЕНИЧЕСКАЯ СПЕЦИФИКА

Для массивов серпентинитов наиболее характерной минерализацией является вторичная магнетитовая и эпигенетическая сульфидная. Причем максимальная концентрация сульфидов наблюдается
в приконтактовых брекчированных зонах массивов. По морфологическим признакам (прожилки, примазки) и ассоциации рудных минералов эта минерализация в целом сходна с колчеданным рудопроявлением вмещающих пород, но отличается появлением сульфидной
фазы никеля. Хромит в аншлифах не был установлен.

Серпентиниты отличаются довольно высокими концентрациями никеля (табл. 2) с примерно одинаковым развитием его сульфидной и силикатной фаз. Отмечаются низкие концентрации хрома для вы-

Габлица 2 Средние содержания рудных компонентов и серы

Компонент	Количество проб	Содержание, вес.%		
Ni общ	110	0.30		
Ni _{Силик}	110	0.17		
Ni сульф	110	0.13		
Sean	110	0.07		
Cr2 03	42	0,20		

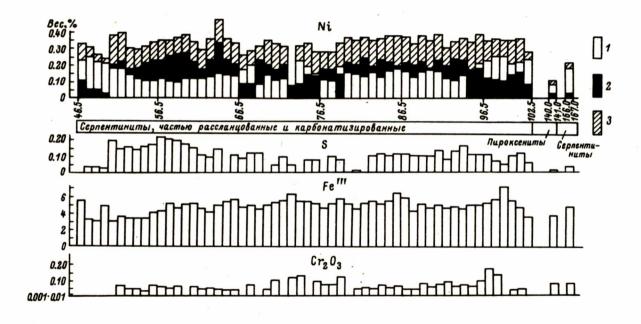


Рис. 3. Характер распределения рудных компонентов и серы по разрезу скв. 12.

1 - никель силикатный; 2 - никель сульфидный; 3 - никель валовый.

сокомагнезиальных пород и резкие колебания в пределах интрузии – от 0.0 до 0.45% при среднем содержании $Cr_00_3 = 0.20$ (табл. 2).

Особый интерес представляет соотношение сульфидного и силикатного никеля в серпентинитах (рис. 3) по результатам химического анализа метровых керновых проб из приконтактовой зоны висячего бока интрузии. Намечаются следующие эмпирические закономерности.

1. Обратная связь между содержанием сульфидной и силикатной фазами никеля. Концентрации сульфидного никеля выше, чем силикатного (среднее содержание силикатного - 0.156%, сульфидного - 0.173%).

Содержание валового никеля сохраняется постоянным в обоих случаях (0.329%).

- 2. Почти постоянное содержание силикатного никеля при резких колебаниях его сульфидной фазы. Содержание сульфидного никеля находится в прямой зависимости от валового содержания никеля в каждой конкретной пробе. Если допустить, что в первичном перидотите
 основная часть общего никеля принадлежала силикатной
 фазе, то неравномерный характер распределения сульфидного никеля и постоянство силикатного никеля в серпентинитах могут свидетельствовать, во-первых, о вторичном характере первого и, во-вторых, о возможности
 извлечения только определенной части никеля из силикатов в процессе вторичного сульфидообразования.
- 3. Максимальное содержание S приурочено в основном к участкам с наиболее высоким содержанием сульфидного никеля, и прямая зависимость между ними (скв. 12) как будто бы существует.
- 4. Максимумы сульфидного никеля совпадают с минимумами $F_e^{"}$ и Cr_2O_3 , намечается также отрицательная связь S и $Fe^{"}$.
 - 5. Соотношение Fe^{m} и $Cr_{2}O_{3}$ неопределенно.

8 6. МЕТАЛЛОГЕНИЧЕСКАЯ СПЕЦИФИКА С УЧЕТОМ РЕЗУЛЬТАТОВ КОРРЕЛЯЦИОННОГО АНАЛИЗА

По данным общей корреляции, в многокомпонентной системе Ni связан (рис. 2) положительно с Mg и Cr, отрицательно - с Fe", Fe", Ti и Mn. Корреля-

ционные зависимости Ni от указанных элементов, за исключением связи Ni-Mn, оказались устойчивыми (первичными), о чем свиде тельствует частная корреляция (рис. 2), тогда как частный коэффициент корреляции Ni и Mn оказался положительным. Кроме того, частная корреляция выявляет дополнительные (в общей корреляции не обнаруживаемые) положительные связи Ni (в порядке убыванисилы связи) с S, Al, K, Si и отрицательные — с Ca и Na. Судя по сводному коэффициенту корреляции, содержание валового Ni практически полностью определяется его связями с остальным компонентами,

В многокомпонентной системе ℓr ассоциирует с Mq и Ni(рис. 2), но хотя он и входит в одну группу с последним, их геохимические роли совершенно различны. В многокомпонентной систе ме $_{\mathcal{C}r}$ связан положительно с Ni и отрицательно с Fe'' . По данным частной корреляции, на содержание хрома может влиять тольк спабая положительная связь с Мл и отрицательная с К . Таким об разом, здесь четко проявляется независимость концентраций самог хрома от остальных компонентов. Устойчивыми оказались прямая зависимость Ni от Cr и обратная от Fe'' . Наряду с этим можно констатировать целый ряд корреляционных связей других элементов с Ст , являющихся отражением процесса кристаплизации и характера ассоциаций элементов, входящих в окислы и силикаты. Так, $Fe^{\prime\prime\prime}$, Al , Ca , Mq и Si связаны положительно с Cr , а S - отрицательно. Но при всем этом сводный коэффициент корреляции для Ст является минимальным в 13-компонентной системе, т.е. его концентрация в породе только частично обусловлена связями с остальными компонентами.

Судя по общим коэффициентам корреляции, несомненно, существуют положительные связи между $Ni_{\rm Ban}-Co$, $Ni_{\rm Ban}-S$, $Ni_{\rm CYЛЬ}-S$, $Ni_{\rm CUЛИК}-Co$ и отрицательные — между $Ni_{\rm CYЛЬ}-Ni_{\rm CUЛИК}$, $Ni_{\rm CUЛИК}-S$; намечается отрицательная связь S с $Fe^{\prime\prime\prime\prime}$. Устойчивость этих связей подтверждается частными коэффициентами корреляции (положительная: $Ni_{\rm Ban}-Co$, $Ni_{\rm Ban}-S$, $Ni_{\rm CYЛЬ}-Co$,

Таблица 3 Общие и частные коэффициенты корреляции

	. <i>Ni</i> Сипик	Co	S	Fe"'	$Cr_2\theta_3$
Ni _{супьф}	(-0.44) (-0.47)	(+0.20) (+0.37)	(+0.54) (+0.51)	(+0,014) (+0.18)	<u>-0.014</u> -0.063
	Ni _{силик}	(+0,27) (+0,40)	(<u>-0.26</u>) +0.031	+0.08	+0.15 +0.073
		c	+0.04 -0.097	+0.08 -0.011	+0.19
				s <u>-0.23</u> (-0.29)	+0.03
				F	e''' +0.15 +0.16
	Со		S	Fe"	Cr ₂ O ₃
Ni _{вал}	(+0.50) (+0.51)	(+0. (+0.	<u>35)</u> 40)	<u>-0.04</u> +0.10	+0.10 -0.014
	C	0 ±0.	04 17	+0.08 -0.004	+0.19
			<i>s</i>	<u>-0.23</u> -0.265)	+0.03
				Fe	

Примечание. В числителе – общие, а в знаменателе – частные коэффициенты корреляции. В скобках – значимые (5-й уровень) коэффициенты корреляции.

Таблица 4 Коэффициенты множественной регрессии

32

	Ni _{сульф}	<i>Ni</i> сипик	Co	S	Fe"	Cr ₂ 0 ₃
Ni _{сульф}	-1	(-0.56) (-0.41)	(+8.54) (+0.30)	(+0.51) (+0.44)	(+0,011)	_0.04_
Ni силик	(-0.40) (-0.54)	-1	(+7.74) (+0.37)	+0.026	+0.0037	+0.036
Co	+0.016	+0.021	-1	+0.004	<u>-0.00003</u>	+0,004
S	(+0,51) (+0,57)	+0.037	(_2.20) (_0.088)	-1	<u>-0.18</u>	+0.067
Fe"	(+2.98) (+0.25)	(+1,36) (+0,083)	(<u>-4.30)</u> (<u>-0.013</u>)	(-4.81) (-0.35)	-1	$\frac{(+1.58)}{(+0.16)}$
Cr_2O_3	<u>-0.10</u>	(+0.14) (+0.085)	(+5.82) (+0.16)	(+0.18) (+0.12)	+0.017	-1
					. 1	2

Таблица 4 (продолжение)

	Ni _{Ben}	Co	s	Fe"	Cr ₂ 0 ₃
Ni _{вал}	-1	(+14.24) (+0.49)	(+0.42) (+0.35)	+0.007	<u>-0.010</u>
Co	_0.018	-1	_0,006	_0.000	+0.004
S	(+0.38) (+0.45)	(-4.52) (-0.17)	-1	+0.018	+0.042
Fe"	(+1.49) (+0.13)	(_1.49) (_0.004)	(-3.90) (-0.29)	-1	(+1.49) (+0.15)
Cr203	_0.021	(+6.46) (+0.19)	+0.097	+0.015	-1

Примечание. В числителе - коэффициенты множественной регрессии в натуральном масштабе, в знаменателе - в стандартизированном. В скобках - значимые (5%-й уровень) коэффициенты.

Таблица 5 Сводные коэффициенты корреляции

	Сводный коэффици- ент корре- ляции	Оценка диспер– сии	Оценка ос- таточной дисперсии	Средние эначения приэнаков
	(>		0.04000	0.1500
Ni _{сульф}	(+0.70)	0.06561	0,04629	0.1736
Ni _{силик}	(+0.59)	0,04846	0.03895	0.1568
Co	(+0.49)	0.00234	0.00203	0.0117
S	(+0.60)	0.05774	0.04594	0.0958
Fe"	+0.34	0.791185	0.74355	4.885
Cr_2O_3	+0.27	0.08022	0.07702	0.0589
Ni BAA	(+0.61)	0.06844	0.05397	0.329
Co	(+0.54)	0,00203	0.00196	0.0117
s	(+0.46)	0.05744	0.05114	0.0958
Fe"	+0,30	0.79118	0.75251	4.885
Crgos	+0.24	0,08022	0.07771	0.0589

Примечание. В скобках - значимые (5%-й уровень) коэф-фициенты коррепяции.

 $Ni_{\text{сульф}}$ — S , $Ni_{\text{силик}}$ — Co; отрицательная: $Ni_{\text{сульф}}$ — $Ni_{\text{силик}}$, S — Fe^{N}), а по уравнениям множественной регрессии в стандартизованном масштабе устанавливается сравнительная степень зависи мости каждого из рассматриваемых компонентов от остальных: $Ni_{\text{вал}}$ = +0.49 Co + 0.35 S , $Ni_{\text{силик}}$ = +0.37 Co — 0.54 $Ni_{\text{сульф}}$, $C_{\text{сульф}}$ — 0.30 Co + 0.44 S — 0.41 $Ni_{\text{силик}}$, S = +0.45 $Ni_{\text{вал}}$ — 0.17 Co , S = +0.57 $Ni_{\text{сульф}}$ — 0.088 Co , Fe^{M} = +0.15 Cr_2O_3 + 0.13 $Ni_{\text{вал}}$ — 0.29 S — 0.04 Co , Fe^{M} = +0.25 $Ni_{\text{сульф}}$ + 0.16 Cr_2O_3 + 0.083 $Ni_{\text{силик}}$ — 0.35 S — 0.013 Co , Cr_2O_3 = +0.19 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 $Ni_{\text{силик}}$ — 0.35 S — 0.013 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 Ni_{cunum} — 0.35 S — 0.013 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 Ni_{cunum} — 0.35 S — 0.013 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 Ni_{cunum} — 0.35 S — 0.013 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 Ni_{cunum} — 0.35 S — 0.013 Co , Cr_2O_3 = +0.18 Co + 0.12 S + 0.085 Ni_{cunum} — 0.25 Co

Судя по сводным коэффициентам корреляции, содержание $Ni_{\rm BAJ}$ $Ni_{\rm Cynb}$, $Ni_{\rm Cunuk}$, S и Co определяется связями каждого из них в рассматриваемой системе компонентов с остальными; сводные коэффициенты для Fe^{III} и Cr_2O_3 незначимы и их концентрации в меньшей степени обусловлены связями с другими компонентами. Сравнивая сводные коэффициенты корреляции (табл. 5) для $Ni_{\rm Cynb}$ (0.70) и $Ni_{\rm Cunuk}$ (0.59), нетрудно убедиться в том, что содержание $Ni_{\rm Cunuk}$ в значительно большей степени зависит от S, Co, Fe^{III} и $Cr_2O_3^{\rm Cynb}$, чем $Ni_{\rm Cunuk}$

§ 7. ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ МАГМАТИЧЕСКОГО И МЕТАМОРФИЧЕСКОГО ЭТАПОВ

Ассоциация Cr, Ni и Mg, устойчивая связь Ni с Mg и Cr, независимость Cr от остальных компонентов и зависимость ряда из них от Cr могут свидетельствовать о фракционировании Ni вместе с Mg и Cr на ранних этапах кристаплизации и о наиболее раннем выделении из расплава основной массы Cr с образованием хромита. Наряду с зависимостью Ni от Mg и Cr наблюдается почти такая же по силе связь Ni с S. Для расшифровки ее природы рассмотрим более подробно коррепяционные зависимости по данным кернового опробования.

Положительная связь Со с Ni сульф общеизвестна для сульфидных медно-никелевых руд (Елисеев, 1959; Häkli, 1963). Положительная связь Со с Ni объясняется их совместной и максимальной концентрацией в наиболее магнезиальных силикатах – опивинах (Абдуллаев и др., 1967; Борисенко, 1966). Кроме того, химические анализы свидетельствуют о том, что Ni и Со легко входят в решетку серпентинов (Абдуллаев и др., 1967; Эдельштейн, 1960; Магто, 1960).

Одни исследователи (Борисенко, 1966) считают, что наибопее вероятная форма вхождения кобальта в сипикаты — изоморфизм с Мд, другие (Абдуллаев и др., 1967) указывают, что Со в силикатах следует за железом. Химические анализы магнетитов (Эдельштейн, 1960) свидетельствуют о наличии в них примеси кобальта.

Отсутствие значимых коэффициентов множественной регрессии для Со, и в то же время наличие связей с остальными эпементаими, а также значимость сводного коэффициента корреляции свидетепьствуют, во-первых, о том, что содержание кобальта в значитепьной мере определяется связями с рассматриваемыми компонентами, и, во-вторых, о его рассеянном состоянии среди силикатов, окислов и сульфидов.

Отрицательная связь \$ - Fe" может быть обусловлена процес. сом антигоритизации хризотиловых серпентинитов, который сопровождается резорбцией хромита и магнетита с образованием почти чистых антигоритовых серпентинитов (Hess et al., 1952). Для объяснения выявленной связи следует допустить, что антигоритизация сопровождалась привносом. S . На это указывают также совме. щение максимальных концентраций серы в скв. 12 (рис. 3) с наибо пее низким содержанием магнетита, отсутствие хромита в аншпифах и минимальное содержание в породе Fe^{m} и $\mathit{Cr}_{2}\mathit{0}_{3}$. О возможности подобного процесса свидетельствуют экспериментальные данные в системе $F - S - 0 - SiO_2$ (Kullerud, Yoder, 1965), где установлено, что привнос небольших количеств 3 ведет к уменьше нию магнетита. В спучае привноса больших количеств 3 спедовало бы ожидать попожительной связи для подобного спучая, так как в панной системе установлен окислительный эффект серы. Он заключается в окиспении избыточного железа (не входящего в супьфиды образовавшегося в результате разложения силикатов. По данным уравнений множественной регрессии, Fe" в большей степени связа но прямолинейной зависимостью с сульфидами, чем с хромом. Максимальное влияние на понижение его содержания оказывает 5. Хром наиболее тесно ассоциирует с Со , S и силикатным никелем т.е. является преимущественно изоморфной примесью в силикатах. Таким образом, на основании приведенных данных спедует признат наиболее вероятным вариантом привнос небольших количеств \$ в заключительные этапы серпентинизации.

Положительная связь $S - Ni_{\text{сульф}}$ и отрицательная связь

Wi силик - S, Wi силик - Wi сульф могут свидетельствовать о вторичном процессе сульфидообразования. Для магматического этапа кри таплизации одни исследователи (Vogt, 1923; Häkli, 1963) признают прямую связь между силикатным и сульфидным никелем, други (Эдельштейн, 1960) - обратную. Что же касается возможности сохранения значительных количеств первичных сульфидов в течение длительного процесса серпентинизации, то она маловероятна. Особенно если учесть, что кристаллизация сульфидов никеля, по мнению А.Г. Бетехтина (1955), идет в гидротермальных условиях при температуре порядка 300°С. По данным Э.Н. Елисеева (1959), интервал кристаллизации медно-никелевых сульфидов заключен в пределах 265-450°С. Экспериментальные исследования в условиях различных парциальных давлений киспорода и серы (Krauskopf, 1961 свидетельствуют о том, что сульфиды более стабильны с падением

температуры и при напичии высокого парциального давления серы.

Все сказанное свидетельствует о том, что трудно ожидать, чтобы первичные сульфиды могли сохраниться в значительных копичествах в более высокотемпературном (порядка 500°) гидротермальном процессе серпентинизации, В случае гидротермального
привноса серы образуются вторичные никелевые сульфиды (Бетехтин, 1955). Поэтому не случайно группа исследователей (Богачев,
Зак, Кочнев-Первухов, 1968) считает, что причины формирования
эпигенетических медно-никелевых руд следует искать в метаморфических преобразованиях полностью застывших основных и ультраосновных интрузий.

Представляет интерес сравнение выявленных особенностей в отношении сульфидного никеля с имеющимися экспериментальными данными по сульфидообразованию и известными природными закономерностями для районов развития гипербазитов докембрия Балтийского щита и других районов. Как установлено опытным путем (Kullerud, Yoder, 1965), сера, реагируя с магнезиально-железистыми силикатами, может давать сульфидные руды пирротин-пентанндитового состава в условиях высоких температур и давлений ($t=800^{\circ}$ С, P=2000 бар). Причем достаточно 2-3% серы для полного разложения оливина (Mg: Fe=1:1) в трактолите.

В.В. Золотухин (1966) также считает возможным процесс

В.В. Золотухин (1966) также считает возможным процесс сульфидообразования, если допустить прорыв глубинных струй сероводорода по разломам, пересекающим твердое, но раскаленное интрузивное тело ($t=800-1000^{\circ}$).

Естественно, что экспериментальные результаты, полученные в простых системах, еще далеки от природных процессов, но здесь важна принципиальная возможность сульфидообразования. И природные закономерности свидетельствуют о том, что этот процесс не является таким уж необычным.

Как уже отмечалось выше, А.Г. Бетехтин (1955) установил образование вторичных никелевых сульфидов в процессе гидротер-мального метаморфизма (с привносом H_2S) упьтрабазитов.

В районе Хаутаваары (Западная Карепия) на продолжении главной колчеданной залежи пирит-пирротинового состава (никель практически отсутствует) установлено несколько зон пирротинового оруденения в актинолит-хлоритовых сланцах по ультрабазитам с повышенным содержанием сульфидного Ni, Cu и Co. А пофизы и ответвления безникелевых пирротиновых руд, достигая никеленосной интрузии Аллареченского района (Кольский полуостров), резко обогащаются никелем. Аналогичное обогащение Ni и Co наблюдается в некоторых колчеданных телах Урала, секущих серпентиниты (Штейнберг, 1963). Д.С. Штейнберг (1963) отмечает, что появление сульфидного никеля в гипербазитах с подавляющим раз-

витием силикатной фазы обусловлено перераспределением и концентрацией этого элемента в результате гидротермальных процессов.

Супьфидная минерапизация с повышенной концентрацией в ней сульфидного никеля и Со отмечается в тремолит-хлоритовых и магнетит-актинопитовых сланцах оз. Рыбозеро в Карелии. Медные руды Оутокумпу, располагающиеся на контакте с серпентинитами, обогащены никелем и кобальтом (Эскола, 1967). Известны случаи обогащения сульфидным никелем черных сланцев на контакте с серпентинитами и скарновый тип никелевых рудопроявлений, сульфидная фаза которых богата Ni и бедна Сu (Hakli, 1963).

Все никелевые месторождения Швеции, расположенные среди спанцевых, частью графитсодержащих, образований докембрия сопровождаются обычно ореолами колчеданной (пирротин, халькопирит) минерализации (Grip, 1961).

Хекпи (Häkli, 1963), изучая распределение никеля между со существующей сульфидной и силикатной (опивины, пироксены, амфи болы) фазами для различно метаморфизованных массивов основных ультраосновных пород Финляндии, установил прямую линейную зави симость между сульфидным и силикатным никелем. На основе постоянства полученных коэффициентов распределения никеля пришел к выводу о возможности быстрого достижения равновесия в распределении никеля между сульфидной и силикатной фазами. Благоприятными для образования сульфидов никеля являются, с одной стороны, случаи прорыва ультраосновным расплавом богатых сульфидам железа пород, а с другой – проникновение сульфидного материала породы, богатые силикатным никелем.

Интересующие нас серпентиновые минералы и существующая сульфидная фаза в этом плане не изучапись. Но, как известно из опытных работ (Roy and Roy, 1954), никель легко замещает в серпентине Му с образованием никелевой серпентиновой фазы. Переход никеля в решетку серпентинов в процессе серпентинизации подтверждается также исследованиями природных серпентинов (Эдельштейн, 1960; Абдуллаев и др., 1967; Montoya, Baur, 1963; Marmo, 1960). Мармо (Маrmo, 1960) установил в антигорите весьма высокие содержания $\mathcal{C}r$ (0.4-0.5%), Ni (0.2-0.3%) и $\mathcal{C}o$ (0.02%) при валовом содержании в антигоритовом серпентините Cr₂0₃ - 1.03%, Ni0 - 0.35%. Высокие концентрации Ni0 (средне 0.30%) известны для магнетитов Урала (Эдельштейн, 1960). Присутствие самородного никелевого железа, образовавшегося в процессе серпентинизации и разложения оливина и пироксена (Nickel 1958), свидетельствует о том, что не весь Ni уходит в решетку серпентина.

Как уже отмечалось выше, содержание валового и силикатного никеля в серпентинитах озер Коросозеро-Пулозеро примерно по стоянно как для пород, обогащенных магнетитом, так и почти не содержащих его. Реликтов самородного никелистого железа не обнаружено. Следовательно, основная часть силикатного никеля должна концентрироваться в серпентине.

Таким образом, на основе геологических и петрографо-минераграфических данных, анализа коррепяционных связей, закономерной ассоциацией зон колчеданной минерапизации (обычно локализующихся в краевых частях синклинальных структур) с массивами серпентинитов (зоны глубинных разпомов) следует признать вторичную природу основной массы сульфидного никеля в изученных массивах. Процесс вторичного сульфидообразования следует рассматривать в основном как результат сульфуризации серпентинита. Исходя из этого гипербазитовый комплекс района Ветреного Пояса можно считать перспективным в отношении эпигенетических сульфидных никепевых руд. Что касается хрома, то необычайно низкие его концентрации в высокомагнезиальных серпентинитах, неравномерность распределения и отсутствие хрома в аншлифах свидетельствуют скорее всего о частичном выносе хрома в процессе антигоритизации. О возможности подобного процесса может свидетельствовать обилие секущих прожилков и вкрапленников хромита, хромсодержащих диопсида и тремолита в зонах реакционных скарнов на контакте с массивами серпентинитов в районе Оутокумпу (Саксепа, 1959; Эскола, 1967).

ЗАКЛЮЧЕНИЕ

В работе рассматриваются основные ститистики корреляционного анализа и их физический смысл. На геологическом примере иллюстрируются некоторые аспекты применения корреляционного анализа в петропогических исследованиях.

Попезность применения математических методов в геологиче ской практике вообще и корреляционного анализа в частности несомненна. Корреляционный анализ позволяет изучать природную многокомпонентную систему в целом, формулировать гипотезы и проверять их на количественной основе с заданным уровнем надех ности и, наконец, аналитически представлять природные закономер ности. Все это выдвигает математико—статистические методы на одно из важнейших мест в методике геологических исследований. Сказанное, однако, не означает, что математические методы могу решать любые задачи и без помощи других методов исследования. Ропь и место корреляционного анализа, как и пюбого из математико—статистических методов, рациональное взаимодействие его с другими способами и средствами изучения определяется конкретными задачами и целями работы.

программа корреляционного анализа

Оформление исходных данных и результатов расчета

Исходные данные наносятся на перфоленту в следующем порядке: С • 10000-го адреса перфорируются в десятичной системе счисления с кодовой запятой значения содержаний Si во всех химических анализах выборки, затем Ti, Al, $Fe^{\prime\prime\prime}$, $Fe^{\prime\prime\prime}$, Mn, Mg, Ca, Na, K и после этого-содержания остальных элементов в произвольном порядке. Необходимо соблюдать указанный порядок первых десяти элементов, так как они используются при киспородном пересчете. Если все химические анализы не содержат какого-либо химического элемента из первых десяти, то сразу перфорируются значения следующего элемента. Программа предусматривает одновременную обработку выборки объемом не более 240 анализов для каждого из 16 элементов.

После числового материала вводится информация, которая содержит:

- 1) заголовок массива, набранный в коде АЦПУ, который вводится цифровым вводом с адреса 7760; максимальная длина заголовка 48 алфавитно-цифровых символов (заголовок может отсутствовать);
- 2) количество химических анализов в восьмеричной системе счисления без одного в масштабе $(N-1)\cdot 2^{-12}$ в ячейку 7774;
- 3) количество химических элементов в восьмеричной системе счисления без одного в масштабе (N-1) · 2-12 в ячейку 7775:
- 4) информационную шкалу указатель наличия первых 10 химических элементов — в ячейку 7776; каждый из 10 старших разрядов этой ячейки (не считая знакового) должен быть равен 1, если соответствующий ему элемент присутствует в данном числовом массиве, или 0 при отсутствии такого элемента (если исходный числовой массив содержит все основные элементы, то в ячейку 7776 следует занести константу 7774 0000 0000).

Числовой материал вместе с информацией заключается в границы ввода.

В зависимости от состояния органов управления результаты расчета выдаются в различных вариантах.

Положение ключей и клавишного на- бора (КН)	Варианты вывода результатов	Широкая печать (АЦПУ)	Уэкая печаті (ТБПІ	Положение ключей и клавишного на- бора (КН)	Варианты вывода результатов	Широкая печать (АЦПУ)	Узкая печать (ТБПМ)
Кпюч 0010 выкл.	Заголовок массива	+		Ключ 0001 выкл.	Матрица оценки ли-	+	+
Единица в 15 р КН	Исходный числовой материал на АЦПУ в масштабе х 10 ⁴ (каж-дый химанализ располага-	+		1999 - 170	матрица информаци- онных коэффициентов кор- репяции	+	+
	ется построчно)			The same of the sa	Матрица количеств информации (если в 13-й	+	. +
Ключ 0010 выкл. Единица в 17 р КН	Наименования основ- ных (первых десяти) хи- мических элементов	+		101-101	разряд КН занесена еди- ница, то печатается не- смещенная оценка количе-		
Ключ 0004 выкл.	Результаты кислород- ного пересчета на АЦПУ	+		P Ejst of the pitch of the pitc	ства информации, иначе печатается смещенная оценка)		×
Единица в 19 р КН	То же, на ТБПМ (п столбцов)		+	Ключ 0002 выкл. Единица в 14 р КН	Печать алгебраиче- ских дополнений к элемен-		+
Ключ 0010 выкл.	Печать средних, стандартов, масштаба на АЦПУ (значения в строке	+		T01-0010	там матрицы парных коэф- фициентов коррепяции (пе- чать топько на ТБПМ)		
· .	масштаба означают, на-				Матрица коэффициен- тов частной корреляции	+	+
	сколько знаков вправо спедует перенести запя-			an'	Матрица коэффициен- тов регрессии	+	+
	тую в соответствующих значениях среднего и стан- дарта)				Матрица коэффициен- тов значимости регрессии	+	+
Ключ 0020 выкл.	Средние и стандарты		+	and the	Матрица коэффициен- тов регрессии в стандар-	+	+
Ключ 0010 выкл.	Матрица коэффициен- тов парной корреляции	. +		THE RESERVE	тизованном масштабе Коэффициенты множе-	+	+
Ключ 0020 выкл.	То же		+	The state of the s	ственной корреляции Коэффициенты значи-	+	+
Ключ 0001 выкл. ¹	Матрица корреляци-	+	+	THE RESERVE TO BE	мости множественной кор-		
	онных отношений Матрица значимости	+	+	The sea	репяции Остаточная дисперсия	+	+
	корреляционных отношений			Ключ 0010 выкл.	Значение определите- ля матрицы парных коэффи-	+ '	+
при выключенном кл	е предусматривается печать о юче 0010 или на ТБМП при в аев, оговоренных особо.	голько на выключенно	АЦП У ом клю	CARLES SE OSAL	циентов корреляции (толь- ко на АЦПУ, без заголов- ка)		
To COZO, kpome chyd	аев, оговоренных осооо.		1	A CONTRACTOR OF THE PARTY OF TH			

Если выключены ключи 0100 и 0001, то перед матрицей корреляционных отношений печатаются значения средних по интерваладля элементов \dot{t} —й строки матрицы, количество наблюдений в интервалах и значения средних \dot{t} —й строки. Такие разультаты выдаются для всех строк матрицы при выключенном ключе 0100.

Распределение памяти

Программа занимает в памяти машины ячейки 6000-7627, в том числе:

собственно программа	- 6000-7401
константы	- 7402-7514
рабочие ячейки	- 7515 - 7570
текстовая информация	- 7571 - 7627
информация к числовому массиву	- 7760–7777
исходная числовая информация	- второй блок,
	мозу
стандартные программы	- 0100-1077
рабочие массивы	- 2162-5717

Описание положения переключателей на пульте машины

В зависимости от содержания требующихся операций при выключенных ключах (указаны слева) производится:

- . 0001 вычисление корреляционного отношения и информационной корреляции
 - 0002 вычисление частной и множественной коррепяции и регрессии
 - 0004 кислородный пересчет
 - 0010 печать результатов на АЦПУ
 - 0020 печать результатов на ТБПМ
 - 0040 ввод числового материала с перфоленты (еспи ключ 0040 включен, то ввод с МЛ)
 - 0100 печать средних по интервалам.

При включенных ключах происходит блокировка соответствующих процессов. При наборе единиц в соответствующих разрядах (р) машинного набора (указаны спева) производятся спедующие операции:

- 13 р вычисляется несмещенная оценка количества информации (если 13 р = 0, то вычисляется смещенная оценка)
- 14 р печать на ТБПМ алгебраических дополнений к матрице парных коэффициентов корреляции
- 15 р печать исходного числового материала на АШПУ
- 16 p работа с MЛ:
 - 1) ввод с ПЛ с записью на МЛ
 - 2) ввод с МЛ
- 17 р печать наименований химических элементов на АШПУ
- 18 р печать заголовков на АЦПУ
- 19 р печать результатов киспородного пересчета на ТБПМ
- 20 р работает блок выборочного погарифмирования (ln)
- 21-36 р по наличию 1 в каждом из 16 разрядов (21-36) производится погарифмирование исходного числового материала (после кислородного пересчета, если он производится) для соответствующего химического элемента (21 разряд погарифмирование всех значений 1-го хим.эл.; 22 разряд то же, 2-го хим. эл. и т.д.).

В старших 12 разрядах клавишного набора (не считая знакового разряда) в восъмеричной системе счислений набирается количество массивов, которые необходимо обработать в соответствии с информацией, набранной на ключах и в 13-36 разрядах клавишного набора. После обработки указанного количества массивов останов СЧАК 6003.

Формат печати на АЦПУ выбирается автоматически.

При печати значимости регрессии и значимости множественной коррепяции возможен останов по переполнению (СЧАК 0350), если печатаемые величины не вмещаются в формат. В таком спучае спедует набрать в СЧАК 7260, выключить 0020 и включить ТБПМ. После "пуска" будет сделан интервал на АЦПУ, а результаты отпечатаются на узкой ленте.

Программа использует следующие стандартные программы Koряжминской библиотеки стандартных программ: СП-0011 - групповой перевод из 2 с/с в 10 с/с с печатью на ТБПМ

СП-0002 - групповой перевод из 10 с/с с кодовой запятой в 2 с/с

СП-0023 - вычисление квадратного корня

СП-0024 - групповой перевод чисел из 2 с/с в 10 с/с с распечаткой на АЦПУ

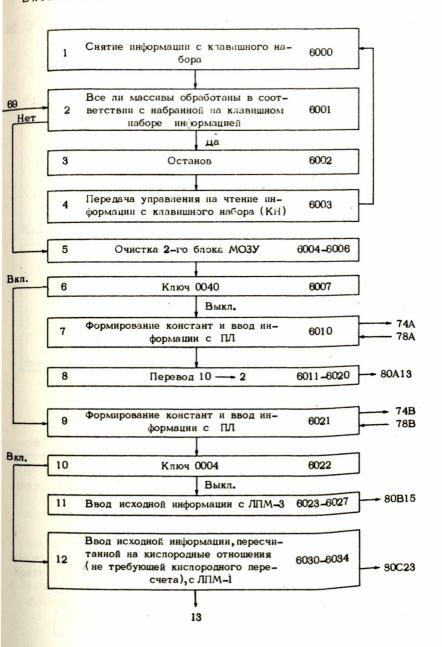
CП-0026 - вычисление e^x

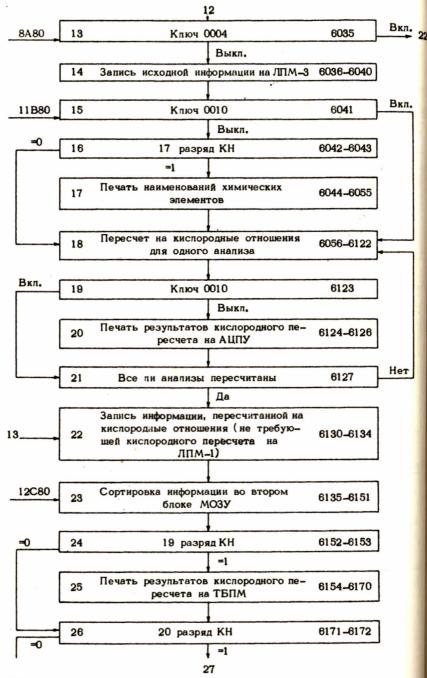
 $C\Pi$ -0027 - вычисление lnx

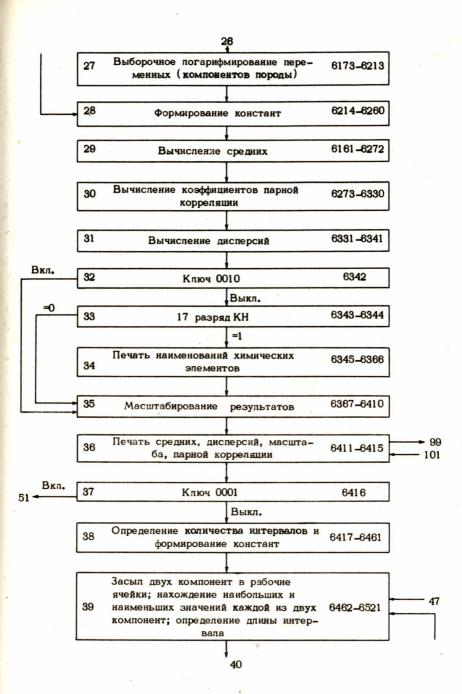
СП-0045 - умножение прямоугольных матриц

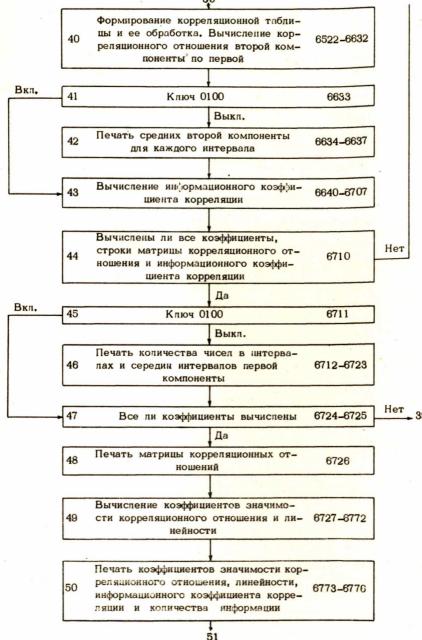
СП-0050 - выдача текста на АЦПУ

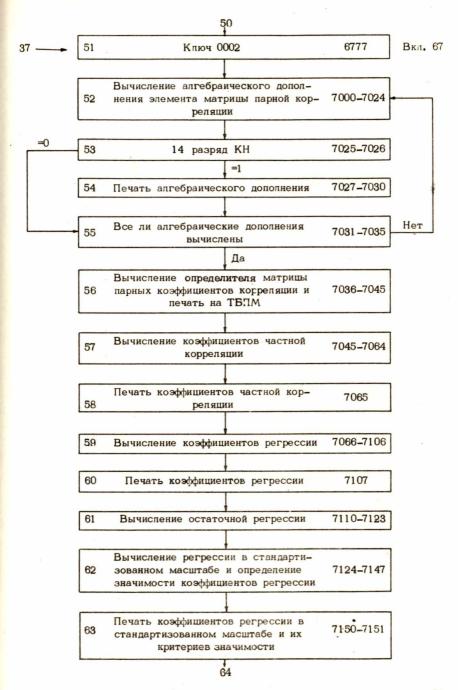
СП-0061 - вывод на перфоратор № 1.

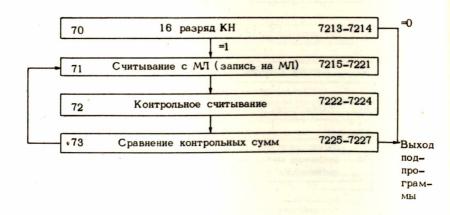

Стандартная программа вычисления определителя прилагается ниже.

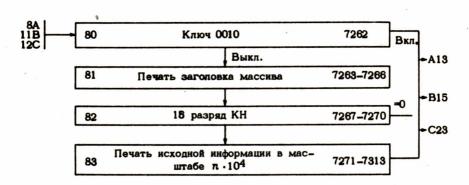

Стандартные программы размещены в следующих ячейках МОЗУ:

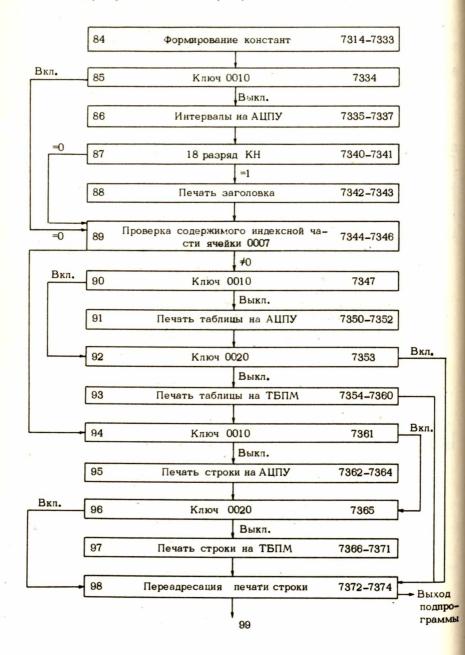

СП-0011	- 0205-0257
СП-0023	- 0260-0315
СП-0024	- 0316-0427
СП-0027	- 0430-0474
СП-0045	- 0475-0531
СП-0050	- 0532-0664
СП-0061	- 0665-0767
СП-0002	- 0770-1024
СП-0026	- 1034-1077
СП вычисления опре-	
депителя	- 0100-0204.

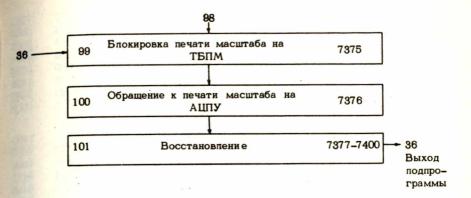

Программа - самовосстанавливающаяся. Она может работать как с использованием магнитных лент, так и без них. Магнитные ленты можно использовать для хранения на них исходной числовой информации и информации, пересчитанной на кислородные отношения. Эта информация может понадобиться для решения других задач. Для записи исходной информации выбран ЛПМ-3, а для пересчитанной - ЛПМ-1.


При записи числового массива на магнитную ленту производится вывод на перфоратор № 1 информации об этом (выводится содержимое ячеек 7760-7777). Для последующего чтения с магнитной
ленты нужного числового массива необходимо установить на фотоввод соответствующий участок информации и набрать необходимую
комбинацию ключей и разрядов на клавишном наборе.

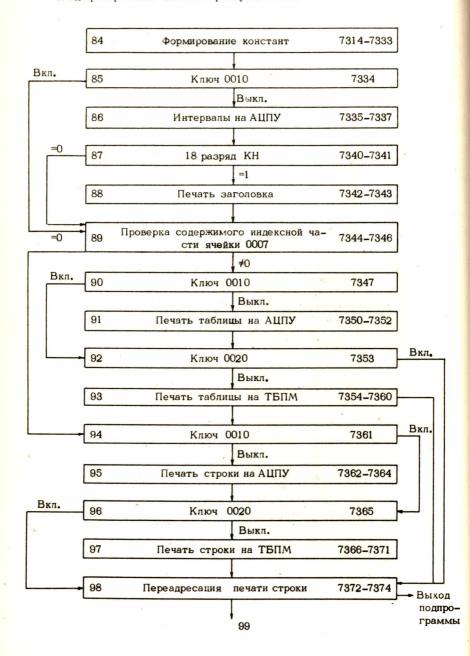


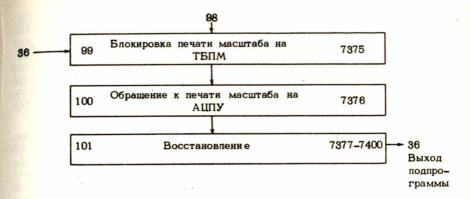

Подпрограмма обращения к МЛ




Подпрограмма формирования констант

Подпрограмма печати исходной информации





Программа для ЭЦВМ "Минск-22"

6000	-13	00	0000	0001	6034	-30	00	6134	0000
1	-20	01	6004	0000	5	-3 5	00	0004	6130
2	-00	00	0000	0000	6	-10	00	7442	7217
3	-30	00	6000	0000	7	-10	00	7773	0007
4	-10	00	7412	0002					
5	-10	22	0000	0000	6040	-31	00	7213	7227
6	-2 0	02	6005	7405	1	-3 5	00	0010	6056
7	-3 5	00	0040	6021	2	71	00	7565	0001
Contract of the Contract of th					3	-34	00	6044	6056
6010	-31	00	7230	7257	4	-10	00	7470	7516
1	11	24	0000	0000	5	-62	00	1400	0000
2	12	00	0000	7515	6	-62	00	1400	0000
3	-31	00	0770	0017	7	-10	00	7437	0003
4	00	00	7515	7515					
5	-10	24	7515	0000	6050	-62	03	5000	7471
6	-2 0	04	6011	7405	1	-2 0	03	6050	7447
7	-31	00	7262	7313	2	-10	00	7433	0003
					3	-62	03	7006	7472
6020	-30	00	6035	0000	4	-20	03	6053	7516
1	~31	00	7230	7257	5	-62	00	7400	0000
2	-3 5	00	0004	6030	6	-10	00	7433	0004
3	-10	00	7441	7217	7	-10	00	7774	0005
4	-10	00	7773	0007					
5	-31	00	7213	7227	6060	-10	00	0004	0002
6	-31	00	7262	7313	1	72	00	7412	0003
7	-3 0	00	6041	0000	2	-10	00	7776	7532
					3	71	00	7420	7532
6030	-10	00	7441	7217	4	-34	00	6067	6065
1	-10	00	7772	0007	5	-10	03	0000	7515
2	-31	00	7213	7227	- 6	-30	00	6072	0000
3	-31	00	7262	7313	7	45	22	7453	0000

Программа для ЭЦВМ "Минск-22"

6000	-13	00	0000	0001	6034	-30	00	6134	0000
1	-20	01	6004	0000	5	-35	00	0004	6130
2	-00	00	0000	0000	6	-10	00	7442	7217
3	-30	00	6000	0000	7	-10	00	7773	0007
4	-10	00	7412	0002					
5	-10	22	0000	0000	6040	-31	00	7213	7227
6	-20	02	6005	7405	1	-3 5	00	0010	6056
7	-3 5	00	0040	6021	2	71	00	7565	0001
					3	-34	00	6044	6056
6010	-31	00	7230	7257	4	-10	00	7470	7516
1	11	24	0000	0000	5	-62	00	1400	0000
2	12	00	0000	7515	6	-62	00	1400	0000
3	-31	00	0770	0017	7	-10	00	7437	0003
4	00	00	7515	7515					
5	-10	24	7515	0000	6050	-62	03	5000	7471
6	-2 0	04	6011	7405	1	-2 0	03	6050	7447
7	-31	00	7262	7313	2	-10	00	7433	0003
					3	-62	03	7006	7472
6020	-30	00	6035	0000	4	-20	03	6053	7516
1	31	00	7230	7257	5	-62	00	7400	0000
2	-35	00	0004	6030	6	-10	00	7433	0004
3	-10	00	7441	7217	7	-10	00	7774	0005
4	-10	00	7773	0007				200	
5	-31	00	7213	7227	6060	-10	00	0004	0002
6	-31	00	7262	7313	1	72	00	7412	0003
7	-30	00	6041	0000	2	-10	00	7776	7532
					3	71	00	7420	7532
6030	-10	00	7441	7217	4	-34	00	6067	6065
1	-10	00	7772	0007	5	-10	03	0000	7515
2	-31	00	7213	7227	. 6	-30	00	6072	0000
3	-31	00	7262	7313	7	45	22	7453	0000

6070	16	03	0000	7515	6140	31	00	0005	7531
1	-2 0	02	6072	7560	1	07	00	0004	0000
2	64	00	7511	7532	2	06	00	7774	0003
3	-2 0	03	6063	7405	3	04	00	7494	0004
4	15	00	7515	7516	4	-10	63	0000	0000
5	36	00	7423	7527	5	-20	04	61 46	7405
6	15	00	7517	7520	6	-20	03	6144	7406
7	36	00	7422	7530	7	-10	24	0000	0000
							-		
6100	15	00	7525	7526	6150	-20	04	6147	7405
1	37	OC	7420	0000	1	-20	05	6136	0000
2	17	00	7530	0000	2	-71	00	7567	0001
3	16	00	7527	7527	3	-34	00	6154	6171
4	14	00	'/521	7527	4	70	00	7413	6166
5	14	00	7522	7527	5	65	00	7506	7774
6	14	00	7523	7527	6	07	00	7774	0000
7	14	00	7524	7527	7	06	00	6166	6166
				,		00	w	0100	0100
6110	-10	00	0004	0002	6160	-10	00	7774	0002
1	72	00	7412	0003	1	-10	00	7775	0002
2	-10	00	7776	7532	2	-10	00	0002	0003
3	71	00	7420	7532	3	-10		0002	2000
4	-34	00	6115	6120	4	-20	44		
5	44	03	7527	7515	5	-31	04	6163	7406
6	16	22	0000	0000	6	00	00	0205	0017
7	-20	02	6120	7557	7	10	30	2000	0030
			0.20	1001		10	w	7411	0002
6120	64	00	7511	7532	6170	00	00	0100	
1	-20	03	6113	7405		-20	03	6162	0000
2	10	00	7405	0004	1 2	71	00	7570	0001
3	-3 5	00	0010	6127		-34	00	6173	6214
4	-31	00	0316	0017	3	-10	00	7444	7520
5	00	11	7515	0000	4	-10	00	7774	0002
6	00	03	0012	0011	5	-10	00	7775	0003
7	-20	05	6060	0000	6	-10	00	7774	0004
	-20	00	0000	0000	7	71	00	7520	0001
6130	-10	00	7442	7217	6200	-34	00	6201	6210
1	-10	00	7772	0007	1	-10	00	0002	0005
2	-31	00	7213	7227	2	-10	00	0004	0006
3	10	00	7771	7773	3	-10	45	0000	0040
4	72	00	7430	7772	4	-31	00	0430	0017
5	-10	00	7775	0005	5	-10	26	0042	0000
6	31	00	7411	0005	6	-20	05	6207	7404
7	12	00	0000	0004	7	-20	06	6203	7405
							Trans.	Wat Par	

6210	10	00	7411	0002	6260	-10	00	0042	7545
1		00	7407	0004	1	-10	00	7777	7516
2		00	7505	7520	2	-10	00	7775	0004
3		03	6177	0000	3	-10	00	7516	0003
4		00	7775	7534	4	-10	00	0000	7517
5		00	7403	7515	5	14	43	0000	7517
6		00	7506	7541	6	-20	03	6265	7404
7		00	7405	7536	7	45	00	7543	7517
		•							
6220	66	00	7512	7537	6270	16	04	0000	2660
1		00	7541	7540	1	10	00	7411	7516
2		00	7405	7775	2	-2 0	04	6263	7405
3		00	0000	7542	3	-11	00	7405	0006
4		00	7506	7533	4	-10	00	7775	0003
5	31	00	7515	7515	5	-10	00	7777	0007
ē	67	00	7512	0000	6	-10	00	7777	0010
7		00	7403	7535	7	10	00	7542	0006
6230	41	00	7515	7452	6300	-10	00	0007	0004
1		00	7443	0000	1	-10	00	0010	0005
2		00	7413	7516	2	-10	00	0000	0040
3		00	7533	7352	3	- 75	00	0000	7516
	4 65	00	7512	7516	4	25	24	2660	0000
	5 22	00	7435	7517	5	16	00	0000	7520
	3 23	00	7403	0000	6	25	25	2660	0000
	7 -32	00	6240	6242	7	16	00	0000	7521
6240	0 04	00	7517	7352	6310	37	00	7520	0000
	1 -30	00	6243	0000	1	16	00	7516	7516
2	2 04	00	7403	7352	2	35	00	7520	7520
	3 -10	00	7352	7364	3	16	0 0	7517	7517
	4 -10	00	7774	7777	4	35	00	7521	7521
	5 -75	00	7777	7543	5	16	00	0040	0040
	6 -72	00	7512	7543	6	-2 0	04	6317	7405
	7 -16	00	7543	7544	7	-20	05	6304	7405
									2212
625	0 16	00	7421	7543	6320	10	00	7410	0010
	1 -75	00	7775	7546	1	-10	06	7516	2200
	2 -72	00	7512	7546	2	34	00	7517	0040
:	3 -16	00	7546	7547	3	-31	00	0260	0017
	4 25	00	7547	7543	4	44	00	0042	7516
	5 26	00	7421	0040	5	-10	06	7516	2720
	6 46	00	7547	7546	6	-2 0	06	6300	7405
	7 -31	00	0260	0017	. 7	10	00	7410	0007

										72										
6330	-20	03	6276	0000	6400	14	00	7421	7520		6450	47	00	7423	0000	6520	46	00	7555	7523
1	-11	00	7405	0006	1	-30	00	6374	0000		1	46	00	7543	7547	1	46	00	7427	7524
2	-10	00	7775	0003	2	25	00	7421	7517		2	70	00	7415	6575	2	-10	00	7440	0003
3	10	00	7542	0006	3	-32	00	6376			3	06	00	7552	6575	3	-10	03	0000	2162
4	15	03	0000	2200					6404			70	00	7414	6576	4	-20	03	0523	7405
8	46	00			4	-10	04	7516	2600		4						-1 0	00	7777	0005
6			7544	0040	5	-10	04	7517	2620		5	06	00	7551	6576	5		00	0000	0003
7	-31	00	0260	0017	6	-10	04	7520	2640		6	70	00	7415	6613	6	-10			
,	-10	06	0042	2700	7	-2 0	03	6410	7404	8	7	06	00	7552	6613	7	25	05	7530	4400
										6										
6340	-20	06	6341	7405	6410	-20	04	6371	7405		6460	70	00	7415	6616	6530	-30	00	6532	7516
1	-20	03	6334	7536	1	-10	00	7466	7402		1	06	00	7552	6616	1	10	00	7554	0003
2	-35	00	0010	6367	2	-31	00	7314	7374		2	-10	00	7775	0007	2	24	00	7523	7516
3	71	00	7565	0001	3	-31	00	7361	7374		3	-11	00	7405	0004	3	17	00	7524	0000
4	-34	00	6345	6367	4	-31	00	7375	7400		4	-10	00	7450	6470	4	-32	00	6531	6535
5	71	00	7413	7352	5	-31	00	7314	7374		5	-10	00	7451	6471	5	25	05	7527	4000
6	12	00	7432	7516	6	-35	00	0001	6777		6	10	00	7542	0004	6	-30	00	6540	7516
7	-62	00	1400	0000	7	-10	00	7543	0040		7	-10	00	7777	0003	7	10	00	7405	0003
•	-02	00	1400	0000	,	-10	00	1543	0040			-10	00	1111	0000	•	10	00	1 100	0000
6350	-62	00	1400	0000	0400	01	00	0.400	0015		0.470		40	0000	4000	6540	24	00	7521	7516
1	-10	00			6420	-31	00	0430	0017		6470	-10	43	0000	4000			00	7522	0000
_			7437	0003	1	35	00	7425	0042		1	-10	43	0000	4400	1	17			
2	-62	03	5000	7471	2	16.	00	7426	7517		2	-20	03	6470	7406	2	-32	00	6537	6543
3	-20	03	6352	7447	3	-10	00	7510	7516		3	-10	00	7403	0005	3	14	03	7421	2340
4	-10	00	7776	7515	4	-73	00	7517	7516		4	-10	00	7777	7516	4	-2 0	05	6526	7405
5	-10	00	7433	0003	5	65	00	7516	7417		5	-10	00	7516	0003	5	-10	00	7552	0003
6	71	00	7420	7515	6	72	00	7517	7555		6	-11	05	7513	7525	6	-10	00	7527	7516
7	-34	00	6 3 60	6364	7	-16	00	7517	7555		7	-10	05	7513	7527	7	-10	00	7530	7517
												,								
6360	-62	03	7004	7472	6430	-73	00	7512	7517		6500	-10	03	4000	7517	6550	-30	00	6553	0000
1	64	00	7405	7515	1	65	00	751.7	7555		1	15	00	0000	7517	1	14	00	7521	7516
2	-20	03	6356	7516	2	12	00	0000	7552		2	00	00	0000	0000	2	14	00	7523	7517
3	-30	00	6366	0000	3	66	00	7506	7550		3	25	05	7517	7527	3	36	03	7517	2566
4	64	00	7405	7515	4	66	00	7512	7551				00	6505	6506	4	-10	03	7517	2542
5	-20	03	6356	7405	5	12	00				. 4	-32	05	7517	7527	5	-10	03	7516	2504
6	-62	00	7400	0000	6	66		7404	7553		5	-10				6	-20	03	6551	7405
7	-10	00	7775	0003			00	7507	7554		6	25	05	7517	7525	7	-10	00	7552	0003
,	-10	00	1115	0003	7	- 70	00	7554	7554		7	-32	00	6511	6510	,	-10	00	1002	0000
										-										
0070	10	00		000 1	0.000							20 ES					• •	00	7000	7510
6370	-10	00	7775	0004	6440	66	00	7513	7556		6510	-10	05	7517	7525	6560	-10	00	7552	7516
1	-10	03	2660	7516	1	20	. 00	7403	7556		1	-20	03	6600	7404	1	-10	00	7552	7517
2	-10	03	2700	7517	2	10	00	7552	7550		2	10	00	7411	7516	2	-10	00	7516	0005
3	-10	00	0000	7520	3	71	00	7561	0001		3	-20	05	6475	7405	3	-10	00	7517	0006
4	25	00	7421	7516	4	-34	00	6445	6452		4	25	00	7527	7525	4	14	05	2340	2516
5	-32	00	6376	6402	5	-10	00	7555	7547		5	46	00	7555	7521	5	14	06	2340	2554
6	44	00	7424	7516	6	14	00	7421	7547		6	46	00	7427	7522	6	-20	05	6567	7553
7	44	00	7424	7517	7	37	00	7565	0000		7	25	00	7530	7526	7	-20	06	6564	7404
				, •••	•	٥.	00	1000	3000		4	20	00	1000	1020	•				

6570 1 2	10 10 10	00, 00 00	7406 7553 7405	7516 7517 7517	6640 1 2	-10 15 46	00 03 03	7556 0000 7543	0003 2340 2162	6710 1 2	-20 -35 70	04 00 00	6467 0100 7413	7405 6724 6715	6760 1 2	16 25 46	03 00 00	0000 7523 7517	4320 7421 0040
3 4	-20 -31	03	6562 0475	0000 0017	3	34	03	7543	2340	3	06	00	7550	6715	3	27	00	7514	0000
5	00	00	2542	2340	4 5	-20 -10	03	6641 7552	7405 0003	4	-31	00	0205	0017	4 5	-32 -10	00 00	6767 0000	6765 0042
6	00	00	0000	2326	6	-10	00	7552	7516	5 6	00 70	00	2516 7413	0000 6721	6	-30	00	6771	0000
7	-10	00	0000	7521	7	-10	00	7552	7517	7	06	00	7550	6721	7	-31	00	0260	0017
6600	-10	00	7552	0005	6650	10	00	7510	0005			-		0017	0770	45	00	0040	7501
1	-10	00	7552	0003	1	-10 -10	00	7516 7517	0005 0006	6720	-31 00	00	0205 2504	0017 0000	6770 1	45 15	00	0042 0000	7521 3720
2	45	05	2516	2326	2	44	05	2516	2340	1 2	-60	00	2400	7431	2	-20	03	6734	7405
3	-33	00	6605	6604	3	-33	00	6654	6654	3	-60	00	3400	0000	3	-31	00	7314	7374
4	14	00	0000	0000	4	44	06	2554	2340	4	20	00	7411	6470	4	-31	00	7314	7374
5	16	03	0000	2530	5	-33	00	6656	6656	5	-20	07	6565	0000	5	-31	00	7314	7374
6	35	05	2530	2326	6	-20	05	6657	7554	6	-31	00	7314	7374	6	-31	00	7314	7371
7	16	00	7521	7521	7	-20	06	6652	7405	7	-10	00	7543	0040	7	-3 5	00	0002	7202
6610	-2 0	03	6611	7405	6660	10	00	7406	7516	6730	26	00	7423	7517	7000	71	00	7415	7023
1	-20	05	6602	7406	1	10	00	7554	7517	1	-31	00	0260	0017	1	06	00	7775	7023
2	-31	00	0475	0017	2	10	00	7404	7517	2	-10	00	0042	7516	2	-10	00	7023	7042
3	00	00	2554	256 6	3	-20	03	6650	0000	3	-10	00	7535	0003	3	-10	00	7535	0006
4	00	00	0000	7516	4	-10	00	7556	0003	4	15	4 03	0000	2720	4	-10	00	7775	0004
5	-31	00	0475	0017	5	-10	00	0000	7516	5	16	00	0000	7520	5	-10	00	7775	7516
6 7	00 00	00	2554	2542	6	-10	03	2340	0040	6	36	00	7520	7522	6	-10	00	7775	7517
,	00	00	0000	7517	7	15	00	0000	0040	7	15	03	0000	3320	7	-10	00	7775	0003
													-						
6620	34	00	7517	7517	6670	-34	00	6672	6671	6740	16	00	0000	7521	7010	-10	00	7535	0005
1	35	00	7543	7516	1	-30	00	6673	0042	1	36	00	7521	7523	1	-10	05	2720	4320
2	26	00	7517	7520	2	-31	00	0430	0017	2	26	00	7522	7524	2	-20	05	7011	7406
3	35	00	7543	7521	3	34	08	2162	0042	3	27	00	7506	0000	3	-10	00	7517	0010
4 5	27 46	00	7517	0000	. 4	16	00	7516	7516	4	-32	00	6747	6745	4	-10	00	7516	0007
6	-33	00	7520 6630	0040 6627	5 6	-20 71	03	6666	7404	5	-10	03	0000	4320	5	-10	07	0000	4320
7	-10	00	0000	0040	7	-34.	00	7561 6700	0001	6	-30	00	6761	0000	6 7	-10	10 07	0000 7020	4 320 7405
	-10	•	0000	0040	•	-04.	•	6700	6701	7	15	00	7523	7522	1	-20		1020	7405
	•																		
6630	-31	00	0260	0017	6700	14	00	7547	7516	6750	27	00	7423	0000	7020	-20	10	7015	7541
1 2	-10	04	0042	3320	1	-11	04	7516	5320	1	37	00	7524	0000	1	-10	06	7421	4320
3	20 -35	00 00	7411 0100	6471	2	36	00	7423	0040	2	. 37	00	7524	0000	2	-31	00	0100	0017
4	-35 70	00	7413	6640 6637	3 4	-31 25	00	1034	0017	3	16	00	7524	0040	3	00	00	4320	0000
5	06	00	7550	6637	5	16	00	0042	7421 0040	4	-31	00	0260	0017	4	-12	06	0041 7562	2200 0001
6	-31	00	0205	0017	6	-31	00	0260	0040	5	34	00	7423	0042	5 6	71	00	7027	7031
7	00	00	2530	0000	7	-10	04	0042	4720	6 7	44 45	00	7516	0042 7524	7	-34 -31	00	0205	0017
					•	0	•	0012	4120	/	40	00	0042	1524		-01	00	0200	0011

7030	00	00	0041	0001	7100	-11	03	7520	3720		7150	-31	00	7314	7374	7220	-30	00	7216	0000	
1	-20	06	7032	7405	1	-20	05	7102	7405		1	-31	00	7374	7374	1	-30	00	7222	7516	
2	10	00	7405	7517	2	-20	03	7103	7405		2	-10	00	7775	0003	2	-47	07	0000	0000	
3	-20	03	7010	0000	3	-20 -20	06	7074	7404		. 3	-10	00	7775	0004	3	-44	06	0000	7760	
4	10	00	7541	7516	4	10	00	7540	7516				03	2200	7557	4	-3 0	00	7222	0000	
5	-20	04	7006	0000							4	45				5	-07	00	7516	0000	
6	-10	00	7635	0006	5	10	00	7405	7517		5	16	00	0000	7516					7227	
7	-10	05			6	-2 0	04	7072	0000		6	25	00	7516	7421	6	-34	00	7216		
,	-10	05	2720	4320	7	-31	00	7314	7374		7	-3 0	00	7160	0040	7	-3 0	00	6133	0000	
7040	-20	05	7037	7406	7110	10	00	7775	0005		=1.00		00	0000	0017	7230	-1 0	00	7435	0005	
1	-31	00	0100	0017		-10	00	7775	0005		7160	-31	00	0260	0017		-10	00	7403	7515	
2	00	00	4320	0000	1	-10	00	7775	0004		1	-10	04	0042	5720	1		00	7505	7515	
3		00			2	-10	00	7775	0003		2	-2 0	03	7163	7537	2	64				
-	-12		0041	7557	3	-3 5	05	27 00	2700		3	-20	04	7154	7405	3	12	05	0000	7561	
4	-31	00	0205	0017	4	16	00	0000	7516		4	-10	00	7775	0003	4	-20	05	7232	7405	
5	00	00	7557	0000	5.	45	04	2200	7557		5	-10	00	7775	0004	5	-50	00	0000	0000	
6	,-10	00	7775	0003	6	36	00	7516	0040		6	35	03	5720	5720	6	11	00	7403	7774	
7	-10	00	7535	0005	7	-31	00	0260	0017		7	16	00	0000	7516	7	12	00	0000	7531	
			3.																		
7050	-10	00	7775	0004	7120	-10	03	0042	5760		7170	25	00	7516	7421	7240	66	00	7506	7557	
1	-10	03	2200	0040	1	-20	05	7122	7406		1	16	00	0000	7517	1	12	00	7404	7560	
2	-31	00	0260	0017	2	-20	04	7123	7537		2	45	00	7517	7516	2	11	. 00	7403	7775	
3	-10	00	0042	7516	3	-20	03	7113	7405		3	-33	00	7174	7174	3	32	00	7531	7770	
4	-10	04	2200	0040	4	-10	00	7775	7516		4	36	04	7546	5740	4	67	00	7512	0000	
5	-31	00	0260	0017	5	-10	00	7775	7517		5	-20	03	7176	7406	5	22	00	7403	0004	
6	45	05	0042	2200	6	-10	00	7775	0004		6	-20	04	7166	7405	6	10	00	7445	7770	
7	46	00	7516	7517	7	-10	00	7535	0003		7	-31	00	7314	7374	7	66	00	7507	7771	
				.011		-10	00	1000	0003		1	-31	00	1314	1014		00	00			
7060	-11	05	7517	3320	7130	-10	00	7535	0007		7200	-31	00	7314	7374	7250	71	00	7411	0001	
1	-20	05	7062	7405	1	-10	00	7516	0005		1	-31	00	7314	7374	1	-34	00	7252	7257	
2	-20	04	7054	7537	2	-10	00	7517	0006		2	-35	00	0010	7212	2	-3 5	00	0040	7254	
3	-20	03	7050	7537	3	45	05	5760	5760		3	-31	00	0316	0017	3	-30	00	7255	0000	
4	-10	00	7467	7402	4	37	07	3720	0000			00	00	7557	0000	4	-35	00	0004	7257	
5	-31	00	7314	7374	5	36	03	7545	4320		4		05	0022	0000	5	-31	00	0665	0017	
6	-10	00	7535	0003	6	45	06	2700	2700		5	00			0000	6	-00	17	7760	0016	
7	-10	00	7775	0004	_	36	07				6	-62	00	1400		7	-30	00	6011	0000	
•	-10	00	1110	0004	, 7	30	01	3720	7520	- 1	7	-62	00	1400	0000	,	-30	00	0011	0000	
7070	-10	00	7775	7516	7140	-10	03	7520	3320		7210	-62	00	1400	0000	7260	-62	00	1400	0000	
1	-10	00	7775	7517	1	-20	03	7142	7405				00	1400	0000	1	-30	00	0017	0000	
2	-10	00	7516	0005	2	-20	07	7143	7404		1	-62	00	6001	0000	2	-3 5	00	0010	7313	
3	-10	00	7517	0006	3	-20	05				2 .	-30					-31	00	0532	0017	
4	45	05	2200	2200	4	-20		7144	7404		3	71	00	7411	0001	3				0040	
5	16	00	0000	7520	5		06	7133	7405		4	-34	00	7215	7227	4	00	07	7760	0000	
						10		7405	7516		5	-10	00	7770	0006	5	-62	00	1400		
6	45	06	2700	2700	6	10	00	7404	7517		6	-47	07	0000	0000	6	-62	00	1400	0000	
1	36	00	7520	7520	7	-20	04	7131	0000		7	-43	06	0000	7760	7	71	00	7563	0001	

7270	-34	00	7271	7313	7340	71	00	7566	0001
1	-10	00	7775	0004	1	-34	00	7342	7344
2	-10	00	7774	0005	2	-31	00	0532	0017
3	70	00	7415	7307	3	00	11	1617	0047
	70	00	7416	7310	4	10	00	7515	7402
4	04	00	7775	7307	5	-20	07	7347	0000
5		00	7506	7775	6	-30	00	7361	0000
6	65	00	7310	7310	7	-35	00	0010	7353
7	06		1010					0010	. 000
		00	0004	0002	7350	-31	00	0316	0017
7300	-10	00	7412	0003	1	00	00	0000	0000
1	72		7504	0000	2	00	00	0000	0000
2	35	22	0000	2000	3	-35	00	0020	7360
3	16	03	7305	7557	4	-6 0	00	3400	0000
4	-20	02		7405					
5	-20	03	7302		5	-31	00	0205	0017
6	-31	. 00	0316	0017	6	00	00	0000	0000
7	00	12	2000	0000	7	-60	00	3400	0000
			0000	0010	7000	00		7070	0000
7310	00	05	0006	0012	7360	-30	00	7372	0000
1	10	00	7405	0004	1	-3 5	QO	0010	7365
2	-20	05	7300	0000	2	-31	00	0316	0017
3	-30	00	6020	0000	3	00	00	0000	0000
4	-10	00	7402	0006	4	00	00	0000	0000
5	-10	06	0000	0007	5	-3 5	00	0020	7372
6	73	00	7414	0000	6	-60	00	3400	0000
7	66	00	7512	7515	7	-31	00	0205	0017
7320	-10	06	0001	7343	7370	00	00	0000	0000
1	71	00	7413	0007	1	-60	00	3400	0000
2	12	00	0000	7516	. 2	10	00	7445	7363
3	05	00	7535	7533	3	10	00	7445	7370
4	12	00	7516	7356	4	-30	00	6415	0000
5	72	00	7416	7351	5	-10	00	7401	7366
6	05	00	7534	7533	6	-31	00	7361	7374
7	12	00	7516	7370	7	-10	00	7371	7366
	-	00	,	1010		-10			1000
7330	72	00	7416	7363	7400	00	00	0000	0000
1	21	00	7465	7516	1	-30	00	7371	0000
2	-32	00	7334	7333	2	00	00	1631	0000
3	20	00	7446	7363	3	. 00	01	0000	0000
4	-35	00	0010	7344	4	00	00	0001	0000
5	-62	00	1400	0000	5	00	00	0000	0000
6					6		00		
7	00	00	0000	0000		00		0001	0001
	-62	00	1400	0000	7	00	00	0000	0400

7410	00	. 00	0001	0400	3	75	77	4733	1005
1	00	00	0400	0000	4	57	06	1115	6406
2	77	77	0000	0000	5	00	00	2700	0000
3	00	00	7777	0000	6	00	00	7571	0000
4	00	00	0000	7777	7	00	00	7651	0000
5	00	00	7777	7777					
6	77	77	7777	0000	7470	00	00	0014	0001
7	77	77	7777	7777	1	17	17	1717	1717
					2	17	61	5017	1717
7420	40	00	0000	0000	3	17	62	5017	1717
1	40	00	0000	0001	4	17	40	5317	1717
2	60	00	0000	0001	5	64	45	1303	1717
3	40	00	0000	0002	6	64	45	1302	1717
4	50	00	0000	0004	7	17	54	5517	1717
5	56	12	5501	4201					
6	77	73	7166	6501	7500	17	54	4317	1717
7	40	00	1506	7002	1	17	66	4017	1717
	-				2	17	55	4017	1717
7430	00	00	0177	7777	3	17	17	5217	1717
1	- 56	73	5673	5673	4	47	04	0000	0416
2	00	00	0002	0001	5	00	00	0000	0101
3	00	11	0000	0000	6	40	00	0000	0130
4	03	77	0000	0000	7	00	00	0000	0114
5	00	07	0000	0000					
6	00	43	0000	0000	7510	00	00	0000	0044
7	00	21	0000	0000	1	00	00	0000	0001
					2	00	00	0000	0014
7440	04	15	0000	0000	3	40	00	0000	0030
1	-45	06	0000	7760	4	40	00	0000	0111
2	-43	06	0000	7760					
3	00	00	0002	0000	7571	00	00	2660	0007
4	00	00	0010	0000	. 2	00	05	7573	0060
5	00	00	0020	0000	3	64	52	6062	4654
6	00	00	0060	0000	4	60	44	4444	6254
7	00	00	0006	0000	5	64	55	6052	6454
					6	75	44	4444	4770
7450	-10	43	0000	4000	7	64	13	4170	6342
1	-10	43	0000	4400					
2	00	00	0000	0200	7600	50	01	2720	0006
3	74	03	6560	5006	1	00	03	7602	0065
4	47	74	6314	6407	2	55	70	5246	7075
5	62	76	0507	5406	. 3	44	44	4476	4352
6	47	73	1463	1407	4	52	60	5175	5654
7	43	73	1463	1407	5	75	42	5044	4444
					6	00	01	3320	0014
7460	43	35	6050	7407	7	00	11	7610	0047
1	50	24	3656	0406					
2	70	05	0753	4006					

7610	76	43	5252	6051	7660	00	01	7661	0072
1	75	56	5443	4646	1	52	60	5352	6064
2	43	60	4444	4443	2	64	54	7542	5044
3	41	46	4313	6046	3	00	01	4320	0006
4	54	60	4444	4444	4	00	03	7665	0064
5	44	36	5446	6260	5	61	46	7012	5447
6	76	64	1644	4464	6	43	64	4167	4444
7	41	43	5163	0727	7	44	52	6053	5260
•	••		0.00	0.2.	•	-11	02	0000	0200
7620	64	41	5243	7670	7670	64	04	EAEA	4050
1	11	42	5044				64	5454	4250
	00			4444	1	00	01	3320	0011
2		01	3720	0011	2	00	06	7673	0052
3	00	06	7624	0053	3	52	60	5352	6064
4	61	46	7012	5447	4	64	54	7544	4471
5	43	64	4167	4444	5	44	44	6441	7046
6	44	76	4352	5260	6	62	70	5241	5461
7	51	75	5654	4346	. 7	43	71	7046	4643
									,
7630	46	43	5343	4444	7700	47	44	4770	6413
1	44	43	4146	4313	1	41	70	6360	4250
2	_60	46	5475	4250	2	00	00	5720	0007
3	00	01	4320	0005	3	00	04	7704	0062
4	00	02	7635	0067	4	47	46	4357	6064
5	76	52	5471	4351	5	41	71	6046	4670
. 6	54	46	6072	4643	6	75	44	4444	7643
7	64	41	6742	5044	7	52	52	6051	7556
	••	••.	0. 12		•	02	02	. 0001	7000
7640	00	01	4720	0007	7710	54	75	4250	4444
1	00	04	7642	0061	1	00	.00	5740	0011
2	54	46	6643	5247	2				
3	70	56	5443	4646	3	00	06	7713	0054
4	70	75				61	46	7012	5447
	43		4444	4476	4	43	64	4167	4444
5		52	5260	5175	5	47	46	4357	6064
6	56	54	7542	5044	6	41	71	6046	4643
7	00	01	5320	0002	7	72	44	4476	4352
7650	22	00	7650	0000	7700	52	90	E176	EOEA
		00			7720		60	5175	5654
1	00	01	3320	0006	1	54	42	5044	4444
2	00	03	7653	0065	2	00	00	5760	0006
3	12	70	6441	4670	8	00	03	7724	0064
4	75	44	4444	7643	4	43	64	4170	4143
5	52	52	6051	7556	5	12	46	7075	4444
6	54	75	4250	4444	6	44	62	5464	5560
7	00	01	3720	0004	7	52	64	5475	4250

Программа вычисления определителя

0100	-12	00	0203	0041	4	44	14	0047	0000
1	-10	17	0000	0016	5	-20	14	0144	0043
2	73	00	0202	0114	6	-11	00	0044	0014
3	66	00	0102	0040	7	35	13	0203	0000
4	06	00	0016	0044	,				
5	72	00	0204	0016					
6	-10	00	0016	0012	0150	-30	00	0151	0054
7	.06	00	0040	0042	1	71	00	0202	0013
					2	07	00	0052	0030
					3	-34	00	0154	0200
0110	13	00	0201	0130	4	-10	00	0015	0012
1	66	00	0110	0043	5	35	12	0054	0000
2	67	00	0112	0014	6	16	14	0000	0000
3	76	00	0043	0045	7	-20	14	0160	0201
4	-12	00	0203	0046					
5	26	00	0046	0047					
6	71	00	0202	0012	0160	-20	12	0155	0203
7	76	00	0042	0013	1	-10	13	0202	0000
					2	-20	13	0147	0043
					3	-10	15	0202	0000
0120	-11	00	0046	0050	4	-20	15	0163	0203
. 1	-11	00	0050	0050	5	-70	00	0043	0043
2	55	13	0047	0000	6	66	00	0152	0012
- 3	-32	00	0124	0134	7	-20	12	0170	0040
4	05	13	0000	0000					
5	-30	00	0126	0047					
6	36	00	0050	0051	0170	-10	00	0012	0013
7	65	00	0152	0013	1	05	12	0202	0000
					2	-34	00	0173	0175
					3	06	13	0202	0000
0130	66	00	0110	0052	4	-2 0	13	0175	0203
1	71	00	0202	0012	5	-2 0	12	0171	0203
2	-30	00	0133	0053	6	-20	16	0106	0000
3	76	00	0042	0015	7	-30	17	0001	0000
4	-20	13	0121	0203					
5	-11	00	0046	0046					00.45
6	-20	12	0116	0043	0200	-20	14	0162	0045
7	34	00	0051	0041	1	00	01	0001	0001
					2	-00	00	7777	7777
					3	-4 0	00	0000	0001
0140	-34	00	0141	0177					
1	21	00	0053	0052	0006			0000	
2	12	00	0016	0014	0204	77	77	0000	7777
3	-30	00	0144	0043					

Контрольный пример

Все ключи выключены. В 13, 14, 15, 17, 18, 19 разрядах клавишного набора находятся единицы. В числовом материале запятая отделяет четыре знака справа.

07774)	0016		0000	0000
7775)	0004		0000	0000
7776)	5050		0000	0000
Результаты	TO ALITTY.			*
гезупьтаты	на Ацпу.			
510500	133200	52900	25600	100
496400	134000	53500	30000	100
511200	140500	55000	32500	110
511400	128800	57700	19500	90
452600	131300	78000	14500	100"
507400	149000	62100	26100	100
414500	178000	63700	49200	90
510100	134500	64500	15000	130
535200	135700	38600	24400	60
508400	131900	58900	29500	100
524000	139700	64800	34000	300
511600	134100	53200	23300	90
487200	135400	64400	33300	80
506600	142300	61400	37900	110
510800	126100	62600	21600	110
0.41065	0.08054		0.05014	0.01548
0.40748	0.08268		0.05174	0.01852
0.40640	0.08396		0.05152	0.01943
0.41130	0.07786		0.05468	0.01179
0.39335	0.08577		0.07987	0.00947
0.40085	0.08848		0.05780	0.01550
0.36901	0.11911		0.06682	0.03294
0.40694	0.08065		0.06063	0.00900
0.41875	0.07981		0.03558	0.01435
0.40801	0.07957		0.05570	0.01780
0.40473	0.08111		0.05897	0.01975
0.41064	0.08090		0.05031	0.01406
0.40083	0.08373		0.06243	0.02060
0.40198	0.08487		0.05740	0.02261
0.41006	0.07609		0.05921	0.01304

Средние	Диспе	рсия	Масштаб		
0.40406	0.08434	0.05685	0.01619	0.01113	
0.01134	0.01012	0.00958	0.00596	0.00544	
0.00000	0.00000	0.00000	0.00000	0.00000	
0.00000	0.00000	0,00000	00000	0.00000	
	Пар	ная корреляц	ия		
		0.00.400	0.00045	0.00000	
1.00000	-0.93010	-0.68428	-0.66845	-0.00320	
-0.93010	1.00000	0.37867	0.76319	-0.11570	
-0.68428	0.37867	1.00000	0.06110	0.16948	
-0.66845	0.76319	0.06110	1.00000	0.06883	
-0. 00320	- 0 . 11570	0.16948	0.06883	1.00000	
Корреля	ционное отноше	ние (индекс:	стопбец/стр	оока)	
1.00000	0.89987	0,88597	0.76966	0.35526	
0.91418	0.99999	0.43993	0.76435	0.25599	
0.99999	0.90138	0.99999	0.78539	0.39181	
0.92507	0.92195	0.64757	0.99999	0.42949	
0.17298	0.26918	0.15839	0.28488	0.99999	
	Значимость ко	оррепяционного	о отношения		
		<u> </u>			
0.00000	7.43927	6.88838	4.34661	1.37030	
8.13266	0.00000	1.76634	4.27409	0.95481	
0.00000	7.50554	0.00000	4.57480	1.53547	
8.78245	8.58290	3.06412	0.00000	1.71477	
0.63325	1.00777	0.57840	1.07155	0.00000	
	· K	оиволинейност			
	K	DABOMANE ANOCI	B		
0.00608	0.00000	1.24721	0.79662	0.78729	
0.00000	0.00000	0.45296	0.08158	0.46616	
1.66739	2.88537	0.00000	3.86062	0.77799	
1.46471	1.08758	2.12669	0.00000	0.99957	
0.34525			0.57937	0.00000	
0.0 1020			,	-,5555	
	77.				
	информе	ционная корр	еляция		
0.87357	0.70165	0.87357	0.74956	0.56716	
0.70165	0.91035	0.70573	0.74685	0.51397	
0.70100	0.81033	0.10013	0.14000	0.01381	

0.87357	-0.70573	0.95626	0.78218	0.60000				
0.74956	0.74685	0.78218	0.95678	0.51567				
0.56716	0.51397	0.60000	0.51567	0.90470				
-0.72012	-0.33895	-0.72012	-0.41259	-0.19406				
-0.33895	-0.88231	-0.34463	-0.40798	-0.15337				
-0.72012	-0.34463	-1.22933	- 0.47313	-0.22314				
-0.41259	-0.40798	-0.47313	-1.23514	-0.15457				
-0.19406	-0. 15337	-0.22314	-0.15457	-0.85323				
	Ча	стная коррел	RUJIR					
-0.99999	-0.99999	-0.99999	-0.99993	-0.00171				
-0.99999	-1.00000	-0.99999	-0.99990	-0.00273				
-0.99999	-0.99999	-0.99999	-0.99994	-0.00081				
-0.99993	-0.99990	-0.99994	-1.00000	-0.00253				
-0.00171	-0.00273	-0.00081	-0.00253	-0.99999				
		Регрессия						
-1.00000	-0.75000	0.40000	0.05000	0.00000				
-1.33332	-1.00000	-0.49999	-0.25000	-0.00000				
-1.99998	-1.49998	-0.66665 -1.00000	-0.33332	-0.00000				
-3.99945	-2.99951	-1.99975	-0.50000 -1.00000	-0.00000 -0.00001				
-0.88172	-1.05295	-0.20828	-0.32509	-1.00000				
		-0.20020	-0.02000	-1.00000				
	Значи	мость регрес	Сии					
	Old III	moorn perpec	CM					
-3.16227	-1.77878	-0. 79056	-0.19765	-0.00000				
-5.62177	-3.16227	-1.40543	-0.35137	-0.00000				
-12,6490	-7.11508	-3.16227	-0.79063	-0.00000				
-50,5861	- 28 . 4541	-12.6466	-3. 16227	-0.00000				
-1430. 87	-1281.57	-169.006	-131.901	-3.16227				
Регрессия в стандартизованном масштабе								
-1.00000	-0.66964	-0.42266	-0.13155	-0.00000				
-1.49332	-1.00000	-0.63117	-0.19645	-0.00000				
-2.36591	-1.58431	-1.00000	-0.31125	-0.00000				
-7.60020	-5.08929	-3.21239	-1.00000	-0.00001				
-1.83509	-1.95667	-0.36645	-0.35605	-1.00000				
			2.0000					

множественная корреляция

0.99999 0.99999 0.99999 0.43571

Значимость множественной корреляции

3532042.9 1582753.7 629536.6 60939.1 0.58585

Остаточная дисперсия

0.00000 0.00001 0.00001 0.00003 0.00490

0.00000017484

ПРОВЕРКА НОРМАЛЬНОСТИ ЭМПИРИЧЕСКОЙ ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

Почти всегда статистический анализ опытных данных сопровождается выяснением соответствия эмпирической функции распределения тому или иному закону. Данное приложение посвящено автоматизации наиболее широко применяемой процедуры - проверки нормальности (логарифмической нормальности). Приводимая ниже программа автоматизирует вычисление на ЭЦВМ "Минск-22" большинства используемых при этом статистик.

Коротко рассмотрим алгоритм, реализуемый программой.

Критерии нормальности эмпирического распределения

Имеется n наблюдений над некоторой случайной величиной $\mathcal{X}: \mathcal{E}_1, \mathcal{E}_2$, ..., \mathcal{E}_n . Требуется проверить гипотезу $\mathcal{H}_0: \mathcal{P}(\mathcal{E} \leqslant x) = N(\mu, \sigma^2)$ о том, что эмпирическая функция распределения удовлетворяет нормальному закону со средним μ и дисперсией σ^2 против альтернативной гипотезы $\mathcal{H}_1: p(\mathcal{E} \leqslant x) \neq N(\mu, \sigma^2)$. Для проверки гипотезы \mathcal{H}_0 могут использоваться различные процедуры.

1. Коэффициенты асимметрии и эксцесса, нормированные их стандартными отклонениями. Вычисляются оценки среднего

$$\bar{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i ,$$

дисперсии

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_{i} - \bar{\xi})^{2},$$

коэффициента асимметрии

$$\gamma_3 = \frac{1}{ns^3} \sum_{i=1}^n (\xi_i - \bar{\xi})^3,$$

коэффициента аксцесса

$$\gamma_4 = \frac{1}{ns^4} \sum_{i=1}^{n} (\xi_i - \bar{\xi})^4 - 3.$$

Как известно, дисперсии оценок коэффициентов асимметрии и экспесса составляют

$$\sigma_{\gamma_3}^2 = \frac{\ell}{n}$$
, $\sigma_{\gamma_4}^2 = \frac{24}{n}$.

Рассмотрим величины

$$t_{\gamma_3} = \frac{\gamma_3}{\sigma_{\gamma_3}}$$
, $t_{\gamma_4} = \frac{\gamma_4}{\sigma_{\gamma_4}}$.

Очевидно, при справедливости гипотезы H_0 о принадлежности выборки нормально распределенной совокупности величины t_{73} и t_{74} должны быть распределены также нормально N (0.1) с нулевым средним и единичной дисперсией. Таким образом, грубая проверка нормальности заключается в анализе величин указанных отношений: величины $0 < t_{73}$, $t_{74} < 2$ не противоречат проверяемой гипотезе; при $2 < t_{73}$, $t_{74} < 3$ нет оснований для выводов в пользу той или иной гипотезы; t_{73} , $t_{74} > 3$ позволяют отвергнуть гипотезу нормальности исходной совокупности.

2. Критерий χ^2 К. Пирсона. Одним из важных вопросов применения этого способа проверки нормальности является разбиение области изменения анализируемой случайной величины на интервалы. Учитывая опыт практической работы и результаты экспериментов с различным количеством интервалов, а также то, что вопрос о количестве интервалов до сих пор не имеет однозначного решения, количество интервалов принято постоянным и равным девяти. Данная величина является наиболее приемлемой и с точки эрения обычной численности выборок, применяемых при петрохимических исследованиях.

Границы интервалов отыскиваются следующим образом. В ряду наблюдений

$$\xi_1, \xi_2, \ldots, \xi_n$$

отыскиваются ξ_{min} и ξ_{max} . Ширина интервала определяется из формулы

$$\Delta = \frac{\xi_{max} - \xi_{min}}{\delta}.$$

Нижняя граница первого интервала принимается $\alpha_0 = -\infty$. Верхняя его граница (или нижняя граница второго интервала) определяется как

$$\alpha_1 = \xi_{min} + \frac{\Delta}{2}.$$

Все последующие границы получаются прибавлением ширины интервала к величине a_1 .

Находим частоты, т.е. количества наблюдений v_j над случайной величиной X, попадающие в соответствующий интервал (a_{j-1} , a_j) области изменения. Для этих же интервалов оцениваются вероятности, отвечающие нормально распределенной величине со средним и дисперсией, равными их выборочным оценкам:

$$p_j = \frac{1}{\sqrt{2\pi}} \int_{\alpha_{j-1}}^{\alpha_j} e^{-\frac{t^2}{2}} dt , \quad \text{rde} \quad \alpha_j = \frac{\alpha_j - \overline{\xi}}{s} .$$

Заметим, что при справедливости предположения о нормальности случайные величины ν_j имеют средние значения np_j . Согласно критерию χ^2 , гипотеза $H_0: p\ (\xi \leqslant x\) = N\ (\mu\ ,\sigma^2)$ должна быть отвергнута, если нормированная сумма квадратов отклонений от своих средних значений

$$\eta = \sum_{j=1}^{m} \frac{(\nu_j - np_j^2)}{np_j} \quad (m = 9)$$

превосходит некоторую Q — процентную точку распределения χ^2 с m — 3 = 6 степенями свободы, которая отыскивается в соответствующих таблицах χ^2 —распределения. Величина Q уровня значимости обычно выбирается настолько малой (1 и 5%), чтобы считать ее близкой к нулю. При этом вероятность ошибочно отвергнуть гипотезу H_Q , когда она верна, приближенно равна Q /100.

3. Информационные статистики. В последнее время наряду с классическими методами математической статистики получают распространение и методы, вытекающие из теории информации. В частности, "сильным конкурентом" критерия χ^2 , по мнению А.Н.Колмогорова (Кульбак, 1967), являются статистики минимума различающей информации и расхождения. В принятых обозначениях они вычисляются следующим образом:

$$\hat{I} = \sum_{j=1}^{m} v_j \ln \frac{v_j}{np_j} , \quad m = 9 ,$$

$$\hat{J} = n \sum_{j=1}^{m} \left(\frac{v_j}{n} - p_j \right) \ln \frac{v_j}{np_j} , \quad m = 9 .$$

Дели проверяемая гипотеза верна, то (Кульбак, 1967) 2 \mathring{I} и \mathring{J} имеют асимптотически χ^2 -распределение с m - 3 = 6 степенями свободы. Таким образом, дальнейшая процедура проверки нормальности с помощью $2\,\mathring{I}$ и \mathring{J} полностью совпадает с таковой для χ^2 .

Рассмотрим некоторые критерии, основанные на разностях функций эмпирического и теоретического распределений. Вместо ряда наблюдений ξ_1 , ξ_2 , ..., ξ_n в дальнейшем будем использовать

$$\eta_1 \leq \eta_2 \leq \ldots \leq \eta_n$$
,

т.е. те же ξ_i , но расположенные в порядке возрастания их значений. Функция

$$F_n(x) = \left\{ \begin{array}{ll} 0 \;, & \text{если} & x \leqslant \eta_1 \;, \\ \frac{m}{n} \;, & \text{если} & \eta_m < x \leqslant \eta_{m+1} \;, 1 \leqslant m \leqslant n-1 \;, \\ 1 \;, & \text{если} & x > \eta_n \end{array} \right.$$

называется функцией эмпирического распределения. Она используется при построении критериев. Под F (x) понимается теоретическая функция распределения, в данном случае – нормального.

4. Критерии Колмогорова и Смирнова. Статистики критериев задаются формулами

$$\begin{split} D_n^+ &= \max \left[\frac{m}{n} - F(\eta_m) \right], \ D_n^- &= \max \left[F(\eta_m) - \frac{m-1}{n} \right], \\ &1 \leq m \leq n \end{split}$$

$$D_n &= \max \left(D_n^+, D_n^- \right). \end{split}$$

Если гипотеза H_0 верна, то статистики \mathcal{D}_n^+ и \mathcal{D}_n^- распределены одинаково. Для уровня значимости $\mathcal{Q} \leqslant 20\%$ с большой точностью

$$D_n(\alpha) \approx D_n^+(0.5\alpha).$$

Таким образом, если вычисленная статистика \mathcal{D}_n превышает табличное значение \mathcal{D}_n ($\mathcal Q$), проверяемая гипотеза отвергается. То же самое следует делать при

$$D_n^+ \ge D_n^+ (Q) .$$

5. Критерии Реньи. Вычисляются $R_n^+(a,1) = \max_{F(\eta_m) \ge a} \frac{\frac{m}{n} - F(\eta_m)}{\frac{F(\eta_m)}{F(\eta_m)}}, \ 0 \le a \le 1,$ $R_n^-(a,1) = \max_{F(\eta_m) \ge a} \frac{F(\eta_m) - \frac{m-1}{n}}{F(\eta_m)}, \ 0 \le a \le 1,$ $R_n(a,1) = \max_{F(\eta_m) \ge a} \left\{ R_n^+(a,1), R_n^-(a,1) \right\}.$

Известно, что при $0 < \alpha \le 1$ имеет место предельное соотношение:

$$\lim_{n\to\infty} P\left\{ \frac{n\alpha}{1-\alpha} R_n(\alpha,1) < x \right\} = L(x), x > 0.$$

функция L (x) табулирована. Если при больших n для вычисленного значения R_n

$$100 \cdot \left[1 - L(R_n)\right] > Q,$$

где Q — выбранный уровень значимости в процентах (1 и 5%), гипотеза H_Q отвергается. При этом величина α (0 < α ≤ 1) позволяет оценивать отрезки наилучшего согласия или различия между эмпирической функцией распределения и функцией нормального распределения.

6. Критерии ω^2 . Статистики выражаются следующими

формулами:

$$n\omega_n^2 = \frac{1}{12n} + \sum_{i=1}^n \left[F(\eta_i) - \frac{2i-1}{2n} \right]^2,$$

$$n\Omega_n^2 = -n - 2\sum_{i=1}^n \left\{ \frac{2i-1}{2n} \ln F(\eta_i) + \left(1 - \frac{2i-1}{2n}\right) \ln \left[1 - F(\eta_i)\right] \right\}.$$

В отличие от предыдущих случаев здесь "расстояние" между эмпирической и теоретической функциями распределения выражается не в равномерной, а в квадратичной метрике. При этом большие отклонения учитываются пропорционально квадрату их величины. Кроме того, если для статистики $n\omega_n^2$ все отклонения учитываются с одинаковым весом, то в статистике $n\Omega_n^2$ благодаря введению весовой функции

$$\Psi(F) = \frac{1}{F(1-F)}$$

наибольший вес имеют отклонения в краевых участках. Иначе говоря, последняя статистика более чувствительна к нарушению согласия между эмпирической и нормальной функциями распределения в их краевых ветвях.

При $n \longrightarrow \infty$ существуют предельные распределения статистик $n\omega_n^2$ и $n\Omega_n^2$:

$$\lim_{n\to\infty} P\left\{n\omega_n^2 < x\right\} = \alpha_1(x), \lim_{n\to\infty} P\left\{n\Omega_n^2 < x\right\} = \alpha_2(x).$$

Функции a_1 (x) и a_2 (x) табулированы.

Для больших n и вычисленных величин $n \omega_n^{\hat{I}}$ и $n \mathcal{Q}_n^{\hat{I}}$

$$100 \cdot \left[1 - a_1 \left(n\omega_n^2\right)\right] > Q$$

или

$$100 \cdot \left[1 - \alpha_2 \left(n\Omega_n^2\right)\right] > Q$$

дают основание отвергнуть гипотезу нормальности.

Логарифмирование исходных данных позволяет проверить гипотезу о логнормальности генеральной совокупности, применяя изложенные выше способы к полученным логарифмам.

Работа с программой

Программа автоматизирует вычисление необходимых для проверки нормальности величин на ЭЦВМ "Минск-22". Исходными данными являются массивы по л наблюдений

$$\xi_{1k}, \ \xi_{2k}, \ldots, \ \xi_{nk}, \ k=1, \ldots, \ N.$$

Количество массивов перфорируется в десятичной системе счисления в виде

и отделяется границами.

Далее перфорируются подряд массивы наблюдений

$$\left\{ \xi_{i} \right\}_{k}$$
 ; $i = 1, ..., n$; $k = 1, ..., N$

с кодовой запятой без адресов.

Каждый массив отделяется границами ввода. Таким образом, на ленте с исходным числовым материалом должен быть (N + 1) ввод.

. Объем каждого массива n не должен превышать 1536: $n \le 1536$, $N \le 24$.

Единица, набранная на пульте в любом из разрядов с 18 по 36, означает предварительное логарифмирование содержимого соответствующего массива под номером с 1 по 24, т.е. для логарифмирования чисел в k-массиве в k+ 12 разряде должна быть набрана единица. При этом включается ключ 0001.

Пусковой адрес программы 6000.

Для работы программы на вводе должна находиться лента с числовым материалом.

Вывод результатов

Предусматривается вывод результатов на АЦПУ и ТБПМ. При выводе на ТБПМ включается ключ 0002.

При выводе на АЦПУ печатаются под соответствующими заголовками следующие величины:

дисперсия	оценка среднего) оценка дисперсии) оценка коэффициента асимметрии) оценка коэффициента
	эксцесса) (оценка нормированно- го коэффициента асим- метрии)
отношение эксцесса t_{74}	(оценка нормированно- го коэффициента эксцесса)
интервалы a_1 , a_2 ,, a_8 ,	(границы интервалов)
гистрограммы ν_{j} , ν_{2} , , ν_{g}	(частоты для интер- валов)
вероятности p_1 , p_2 , , p_9	(теоретические вероят- ности для тех же ин- тервалов)
хи-квадрат	(статистика критерия) (количество степеней свободы)
информация	(статистика миниму- ма различающей ин- формации)
расхождение	(статистика информа- ционного расхождения)
Критерий Колмогорова \mathcal{D}_n^+ , k , \mathcal{D}_n^- , l	(статистики критериев и номера наблюдений, наиболее отклоняющих-ся от теоретического закона)
Критерий Омега $n\omega_n^2$, $n\Omega_n^2$	(статистики критерия)
Критерий Реньи $\sqrt{\frac{n\alpha}{1-\alpha}} R_n(\alpha,1)$	(статистика критерия для параметра c , из-меняющегося от 0.1 до 0.9).

При выводе на ТБПМ результаты располагаются в том же порядке и группируются в соответствии с указанным выше распределением по строкам при печати на широкой ленте.

Распределение памяти

Программа занимает в памяти машины ячейки, в том числе:

6000-6472 - собственно программа

6505-6555 - константы

4000-4077 - текстовые константы

6556-6577 - рабочие ячейки 0046-64

7776-7777

4100-4152 - рабочие массивы

0120-0636 - стандартные программы

1000-3777 - исходная числовая информация.

Программа использует следующие стандартные программы Коряжминской библиотеки стандартных программ:

СП-0002 - групповой перевод из десятичной системы с кодовой запятой в двоичную

СП-0011 - групповой перевод из двоичной системы счисления в десятичную с печатью на ТБПМ

СП-0023 - вычисление квадратного корня

СП-0024 - групповой перевод из двоичной системы счисления в десятичную с распечаткой на АЦПУ

СП-0027 - вычисление 2 п ж

СП-0056 - сортировка массива методом включения

СП-0050 - выдача текста на АЦПУ.

Стандартная программа "Вычисление интеграла вероятности из библиотеки Сп для ЭВМ "Минск-2" прилагается ниже.

Стандартные программы занимают следующие ячейки в МОЗУ:

 СП-0056
 - 0120-0177

 вычисление интеграла вероятности
 - 0200-0262

 СП-0002
 - 0263-0317

 СП-0011
 - 0320-0371

 СП-0024
 - 0372-0502

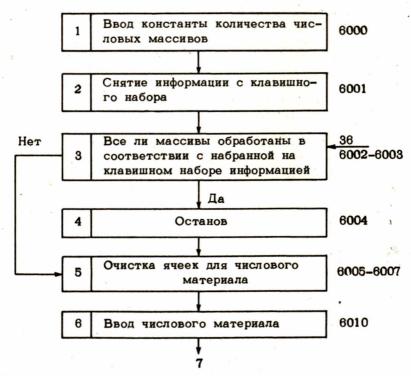
 СП-0023
 - 0503-0537

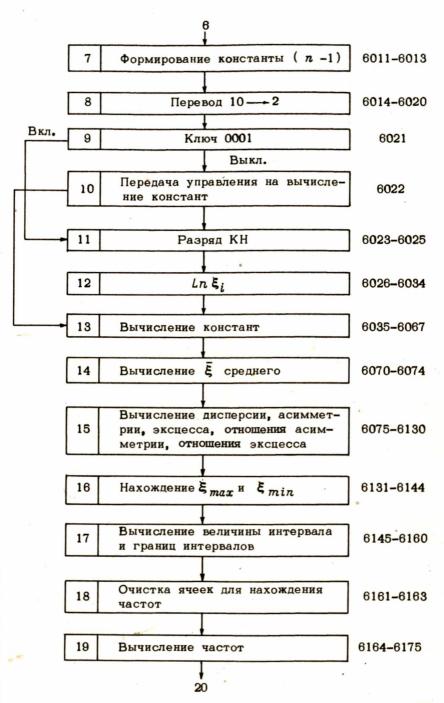
 СП-0027
 - 0540-0604

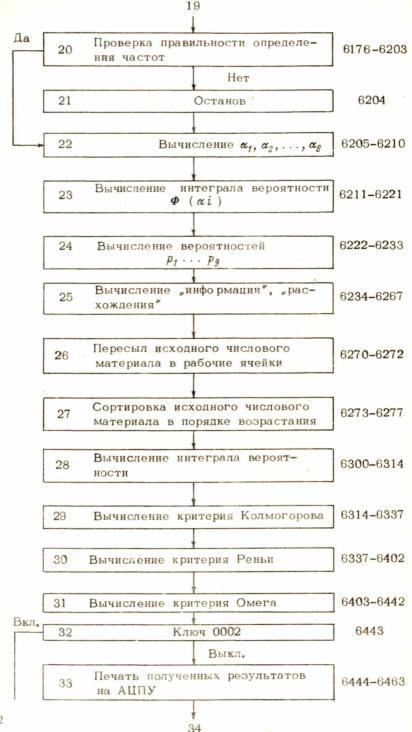
 СП-0050
 - 0605-0638

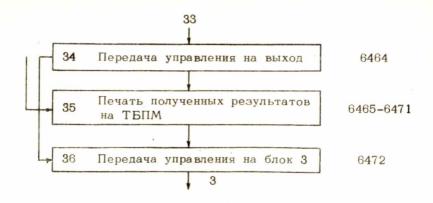
Программа самовосстанавливающаяся. В исходных данных вместо нулевых значений следует использовать числа с достаточно малыми порядками.

79


Пример


В качестве массива взяты 100 нормально распределенных случайных чисел (Большев, Смирнов, 1965, стр. 433, столбцы 1, 2).


Результаты вычислений по программе следующие: $\bar{\xi} = -0.08997$; $s^2 = 1.05401$; $\gamma_3 = 0.06033$; $\gamma_4 = -0.10285$; $t_{\gamma_3} = 0.24633$; $t_{\gamma_4} = -0.20995$; α_j : -2.18124, -1.49174, -0.80224, -0.11274, +0.57675, +1.26625, +1.95575, +2.6452; y_j : 1, 8, 16, 24, 26, 16, 7, 1, 1; ρ_j : 0.02082, 0.06523, 0.15784, 0.24724, 0.25081, 0.16478, 0.070009, 0.01929, 0.00385; γ = 2.39372; ст. свободы 6; $2\hat{I} = 2.30158$; $\hat{J} = 2.36252$; $D_n^+ = 0.04528$; k = 28; $D_n^- = 0.05528$; l = 28; $n\omega_n^2 = 0.03766$; $n\Omega_n^2 = 0.23453$; $\sqrt{\frac{n\alpha}{l-\alpha}}R_n(\alpha,l)$ (для значений α : 0,1, ..., 0.9): 1.099001, 0.84985, 1.11271, 0.65994, 0.80826, 0.77643, 0.85926, 0.52204, 0.78306.


Сравнение полученных величин с критическими не дает оснований отвергнуть проверяемую гипотезу о нормальности исходной совокупности по данным анализа выборки.

Блок-схема программы

Стандартная программа вычисления интеграла вероятност**и**

	•								
0200	-10	00	0260	0042	2	-10	00	0251	0016
1	55	00	0250	0040	3	35	00	0042	0041
2	-32	00	0227	0203	4	16	16	0251	0042
3	-12	00	0040	0041	5	-20	16	0233	0251
4	57	00	0260	0000	6	45	00	0042	0260
5	-32	00	0231	0206	7	-30	00	0240	0042
6	-75	00	0041	0042					
7	36	00	0041	0045	0240	36	00	0042	0042
					1	36	00	0042	0042
0210	-10	00	0000	0041	2	36	00	0042	0042
1	14	00	0043	0042	3	36	00	0042	0042
2	14	00	0260	0041	4	25	00	0042	0260
3	17	00	0041	0000	5	-30	00	0227	0042
4	26	00	0260	0044	6	44	06	7272	3601
5	37	00	0043	0000	7	40	00	0000	0002
6	47	00	0041	0000					
7	36	00	0045	0043	0250	74	21	3207	1202
					1	00	06	0001	0000
0220	14	00	0247	0044	2	55	11	7544	0116
1	44	00	0044	0043	3	44	20	0050	4113
2	-11	00	0043	0043	4	47	66	3007	0114
3	17	00	0042	0000	5	45	76	1550	6106
4	07	00	0042	0000	6	53	22	7777	2104
5	-34	00	0211	0226	7	44	06	7147	3103
6	34	00	0246	0 042					
7	-14	00	0040	0042	0260	40	00	0000	0001
					1	00	46	0000	0000
0230	-30	17	0000	0000	2	-4 5	34	5221	5114
1	24	00	0042	0042	3				

4					4	44	44	4444	4444
5					5	44	44	4444	4444
6					6	44	44	4464	4160
7					7	55	60	4654	4464
0270					4040	71	43	6343	6265
1					1	44	44	4444	4444
2					2	44	44	4444	4444
3					3	44	44	4454	4666
4					4	43	52	4770	5654
5					5	75	44	4444	4444
6					6	44	44	4444	4444
7					7	44	44	4444	4444
4000	64	52	6062	4660	4050	52	70	6445	4357
1	60	44	4444	4444	1	62	60	4654	6042
2	44	44	4444	4444	2	50	22	0404	0404
3	62	54	6455	6052	. 3	00	00	0000	0000
4	64	54	7544	4444	4	00	00	0000	0000
5	44	44	4444	4444	5	76	52	5441	6052
6	44	70	6454	4747	6	54	72	4476	4351
7	60	41	5254	7544	7	47	43	5343	5243
4010	44	44	4444	4444	4060	71	70	4444	4444
1	44	44	4426	7664	1	44	44	4444	4444
2	56	60	6464	4444	2	44	44	4444	4444
3	44	44	4341	4643	3	44	44	4444	4444
4	13	60	4654	6044	4	44	44	4444	4444
5	70	64	5447	4760	5	44	44	4444	4444
6	41	52	5454	4444	6	44	76	5 254	4160
7	44	43	4146	4313	7	52	54	7244	4347
4020	60	46	5460	4426	4070	60	53	7042	5022
1	76	64	5660	6464	1	54	46	4160	5271
2	70	42	5022	0404	2	70	51	6542	5022
3	00	00	0000	0000	, 3	00	00	0000	0000
4	53	54	6441	4353	4	00	00	0000	0000
5	52	70	4747	6542	5	76	52	5441	6052
6	50	22	0404	0404	6	54	72	4452	6046
7	71	60	5243	7541	7	67	54	425 0	2204
4030	46	43	6441	5442	6000	-50	00	0000	0000
1	50	22	0404	0404	1	-13	00	0000	0046
2	45	54	4430	0476	2	-10	00	7777	0010
3	71	70	6252	7041	3	-20	10	6005	0000
		500 (50							

4	-00	00	0000	0000	4	00	00	0000	0000
5	-10	00	6550	0007	5	00	00	0000	0000
6	-10	07	0000	1000	6	00	00	0000	0000
7	-20	07	6006	6543	7	00	00	0000	0000
6010	-50	00	0000	1000	6060	00	00	0000	0000
1	-15	00	0000	7776	1	00	00	0000	0000
2	-21	00	6551	7776	2	00	00	0000	0000
3	66	00	6123	7776	3	00	00	0000	0000
4	-10	00	6541	0047	4	00	00	0000	0000
5	71	00	6545	6020	5	00	00	0000	0000
6	06	00	7776	6020	6	25	00	6534	6537
7	-31	00	0263	0017	7	16	00	0000	4131
6020	00	00	1000	1000	6070	-10	00	7776	0001
1	-35	00	0001	6023	1	-75	00	0000	4100
2	-30	00	6335	0000	2	14	01	1000	4100
3	64	00	6352	0047	3	-20	01	6072	6542
4	71	00	0046	0047	4	44	00	6560	4100
5	-34	00	6026	6035	5	-10	00	7776	0001
6	-10	00	7776	0001	6	-75	00	0000	4102
. 7	-10	00	7776	0002	7	25	01	4100	1000
v									
6030	-10	01	1000	0040	6100	16	00	0000	0050
1	-31	00	0540	0017	1	35	00	0050	0050
2	-10	02	0042	1000	. 2	16	00	0000	0051
3	-20	01	6034	6542	3	36	00	0050	0052
4	-20	02	6030	6543	4	36	00	0050	0053
5	11	00	6541	7776	5	14	00	0051	4101
6	12	00	0000	0050	6	14	00	0052	4102
7	-75	00	0050	6557	7	14	00	0053	4103
6040	-72	00	6411	6557	6110	-20	01	6077	6543
1	-16	00	6557	6560	1	44	00	6557	4101
2	26	00	6533	6557	2	-30	00	6113	0040
3	45	00	6560	6536	3	-31	00	0503	0017
4	-30	00	6045	0040	4	-10	00	0042	0050
5	-31	00	0503	0017	5	35	00	0050	4101
6	-10	00	0042	6561	6	-30	00	6117	0051
7	36	00	6534	6562	7	36	00	4101	0052
6050	21	00	6541	7776	6120	45	00	6560	4102
1	- 12	00	6542	6563	1	46	00	0051	4102
2	00	00	0000	0000	2	45	00	6560	4103
3	00	00	0000	0000	3	47	00	0052	0030

4 5 6 7	26 45 16 45	00 00 00	6535 6561 0000 6562	4103 4102 4104 4103	4 5 6 7	14 -20 -10 -10	01 02 00 00	6533 6165 6547 0000	4105 6542 0002 0065
6130 1 2 3 4 5 6 7	16 -10 -10 25 -32 -10 -20	00 00 00 01 00 01 01 00	0000 6563 1000 1000 6136 1000 6133 6563	4105 0001 0051 0051 6135 0051 6542 0001	6200 1 2 3 4 5 6 7	14 -20 25 -34 -00 -10 25 46	02 02 00 00 00 00 01 01	4106 6200 6560 6204 0000 6555 4100 0050	0065 6542 0065 6205 0000 0001 4153 6567
6140 1 2 3 4 5 6 7	-10 25 -32 -10 -20 25 46 46	00 01 00 01 01 00 00	1000 1000 6143 1000 6141 0052 6537 6537	0052 0052 6144 0052 6542 0051 0053 0053	6210 1 2 3 4 5 6 7	-20 -10 45 -30 -34 -31 -30 -10	01 00 01 00 00 00 00	6206 6555 6554 6214 6215 0200 6220 0000	6543 0001 6567 0040 6217 0017 0000 0042
6150 1 2 3 4 5 6 7	14 16 16 16 16 16 16	00 00 00 00 00 00 00	0052 0053 0053 0053 0053 0053 0053	4153 4154 4155 4156 4157 4160 4161 4162	6220 1 2 3 4 5 6 7	-10 -20 15 46 -10 -10 25 46	01 00 00 00 00 00 01	0042 6212 6533 6534 6552 6552 6567 6534	6567 6543 6567 4117 0001 0002 6570 4120
6160 1 2 3 4 5 6 7	16 -10 -10 -20 -10 -10 -10	00 00 02 02 00 00 00	0053 6547 0000 6162 7776 6505 0000 6543	4163 0002 4106 6543 0002 6170 0001	6230 1 2 3 4 5 6 7	-20 -20 25 46 -10 -10 -10	01 02 00 00 00 00 00	6231 6226 6576 6534 6547 6547 6547 0000	6544 6543 6533 4127 0001 0002 0003 4130
6170 1 2 3	25 -32 10 -30	02 00 00 00	1000 6174 6543 6167	4153 6172 6170 0000	6240 1 2 3	-75 35 16 25	00 01 01 02	0000 6560 0000 6567	4132 4117 6567 4106

4	16	00	0000	0005	4	00	00	0000	0000
5	34	00	0065	0065	5	-10	00	7776	0001
6	45	03	6567	0065	6	-10	00	0000	0065
7	16	00	4130	4130	7	-10	00	0000	4134
•	14	00	1100	1100				0000	1101
6250	-10	02	4106	4106	6320	-10	00	0000	4136
1	-34	00	6252	6263	1	14	00	6533	0065
2	45	01	6560	4106	2	45	00	6560	0065
3	26	03	4117	0066	3	26	01	2500	0066
4	45	02	6567	4106	4	55	00	4134	0066
5	16	00	0000	0040	5	-32	00	6326	6330
6	-31	00	0540	0017	6	-12	00	0666	4134
7	35	03	4106	0042	7	-10	00	0065	41 35
,	30	03	4100	0042	1	-10	00	0000	41 00
6260	16	00	4132	4132	6330	25	. 00	6533	0065
1	35	00	0066	0042	1	46	00	6560	0067
2	16	00	4133	4133	2	24	01	2500	0067
3	-20	01	6264	6543	3	55	00	4136	0067
4	-20	02	6265	6544	4	-32	00	6335	6337
5	-20	03	6241	6542	5	-12	00	0067	4136
6	34	00	6534	4132	6	-10	00	0065	4137
7	34	00	6560	4133	7	-20	01	6321	6542
1	34	00	0300	4133	,	-20	UI	0321	0042
6270	-10	00	7776	0001	6340	-10	00	6547	0002
1	-10	01	1000	2500	1	-10	00	0000	0065
2	-20	01	6271	6544	2	-10	00	7776	0001
3	71	00	6545	6276	3	14	00	6540	0065
4	06	00	7776	6276	4	-75	00	0000	0066
5	-31	00	0120	0017	5	-10	00	0000	0053
6	00	00	0000	2500	6	14	00	6533	0053
7	-10	00	7776	0001	7	55	01	2500	0065
	-10	00	1110	0001	,	55	O1	2000	0000
6300	25	01	4100	2500	6350	-32	00	6366	6351
1	47	00	0050	0000	1	45	00	6560	0053
2	46	00	6554	0040	2	27	01	2500	0101
3	-34	00	6304	6306	3	46	01	2500	0054
4	-31	00	0200	0017	4	55	00	0066	0054
5	-30	00	6307	0000	5	-32	00	6356	6357
6	-10	00	0000	0042	6	-12	00	0054	0066
7	15	00	6533	0042	7	25	00	6533	0053
,	15	00	0000	0042	,	20	00	0000	0000
6310	46	01	6534	2500	6360	46	00	6560	0055
1	-20	01	6300	6543	1	25	01	2500	0055
2	00	00	0000	0000	2	46	01	2500	0055
3	00	00	0000	0000	3	55	00	0067	0055
0	00	00	0000	0000	0	00	00	0001	0000

4	-32	00	6365	6366	4	45	00	6560	6533
5	-12	00	0055	0067	5	47	00	6534	0000
6	-20	01	6346	6542	6	47	00	6536	0000
7	25	00	0065	6533	7	16	00	4140	4140
				,					
6370	16	00	0000	0056	6440	35	00	6534	4141
1	35	00	0065	6560	1	16	00	6560	4141
2	46	00	0056	0040	2	-11	00	1411	4141
3	-31	00	0503	0017	3	-35	00	0002	6465
4	25	00	0066	0067	4	-10	00	6552	0001
5	-32	00	6376	6400	5	-10	00	6552	0002
6	35	00	0042	0067	6	-10	01	6506	6453
7	-30	02	6402	4142	7	-10	01	6515	6456
6400	35	00	0042	0066	6450	71	02	6553	6524
1	-30	02	6402	4142	1	06	00	0000	6455
2	-20	02	6342	6543	2	-31	00	0605	0017
3	-10	00	7776	0001	3	00	00	0000	0000
4	-10	00	7776	0002	4	-31	00	0372	0017
5	-10	00	0000	0065	5	00	00	0000	0000
6	-75	00	0000	4140	6	00	00	0000	0000
7	14	00	6533	0065	7	-62	00	1400	0000
6410	35	00	6534	0065	6460	-20	01	6461	6542
. 1	27	00	6533	0014	. 1	-20	02	6446	6543
2	47	00	6534	0000	2	-62	00	1400	0000
3	46	00	6560	0066	3	-62	00	1400	0000
4	25	01	0066	2500	4	-30	00	6472	0000
5	16	00	0000	0067	5	-10	00	6552	0001
6	35	00	0067	0067	6	-10	01	6524	6470
7	16	00	4140	4140	7	-31	00	0320	0017
6420	-10	02	2500	0040	6470	00	00	0000	0000
1	-31	00	0540	0017	1	-20	01	6466	6542
2	35	00	0042	0066	2	-30	00	6003	0000
3	16	00	4141	4141	3	00	00	0000	0000
4	25	02	2500	6533	4	00	00	0000	0000
5	16	00	0000	0040	5	00	00	0000	0000
6	-31	00	0540	0017	6	00	00	0000	0000
7	25	00	0066	6533	7	00	00	0000	0000
•									
6430	37	00	0042	0000	6500	00	00	0000	0000
1	16	00	4141	4141	1	00	00	0000	0000
2	-20	01	6433	6543	2	00	00	0000	0000
3	-20	02	6407	6542	3	00	00	0000	0000

					_				
4	00	00	0000	0000	2	00	10	4142	0010
5	25	02	1100	4153	3	40	00	0000	0001
6	02	00	4000	0013	4	40	00	0000	0002
7	02	00	4071	0071	5	60	00	0000	0002
					6	60	00	0000	0003
6510	02	00	4025	0070	7	40	00	0000	0004
1	02	00	4024	0070					
2	02	00	4032	0020	6540	63	14	6314	6103
3	02	00	4055	0037	1	00	01	0000	0000
4	02	00	4075	0066	2	00	00	0001	0000
5	00	12	0021	0005	3	00	00	0000	0001
6	00	07	0016	0007	4	00	00	0001	0001
7	00	05	0014	0010	5	00	000	7777	7777
					6	77	77	0000	0000
6520	00	05	0014	0010	7	00	10	0000	0000
1	00	22	0031	0003					
2	00	11	0020	0005	6550	27	77	0000	0000
3	00	05	0014	0010	1	00	00	0000	1001
4	00	05	4100	0005	2	00	06	0000	0000
5	00	07	4153	0007	3	77	77	7777	0000
6	00	10	4106	0010	4	55	20	2361	6401
7	00	10	4117	0010	5	00	07	0000	0000
					6	00	00	0000	0000
6530	00	03	4130	0003	7				
1	00	05	4134	0005					

ЛИТЕРАТУРА

- Абдуллаев 3.Б., Щербина В.В., Эфендиев Г.Х. К геологии никеля и кобальта в ультраосновных породах офиолитовой формации Малого Кавказа (Азербайджан). - Геохимия, 1967, № 4.
- Андерсон Т. Введение в многомерный статистический анализ. М., Физматгиз, 1963.
- Артемов В.Р., Кузнецова В.Н. Метасоматические изменения гипербазитов при серпентинизации. Тр. I конференции по околорудному метасоматозу. М., "Недра", 1966.
- Белов И.В., Богидаева М.В. Формация ультраосновных пород восточной части Восточного Саяна и Прибайкалья. - В кн.: Петрография Восточной Сибири, т.2. М., Изд-во АН СССР, 1962.
- Белов Н.В., Литвинская Г.П. Новые представления об изоморфных замещениях. Вестник МГУ, 1966, сер. 1У, геология, № 6.
- Бетехтин А.Г. О метаморфических породах, образующихся за счет ультраосновных изверженных пород. - В кн.: Вопросы петрографии и минералогии, т. 1. М., Изд-во АН СССР, 1953.
- Бетехтин А.Г. О генетической связи гидротермальных образований с интрузивами. В кн.: Основные проблемы в учении о магматогенных рудных месторождениях. М., Изд-во АН СССР, 1955.
- Богачев А.И., Зак С.И., Кочнев-Первухов В.И. О происхождении эпигенетических руд некоторых сульфидных медно-никелевых месторождений. В кн.: Вулканогенные и гипербазитовые комплексы протерозоя Карелии, вып. 1. Петрозаводск, 1968.
- Богачев А.И., Куликов В.С., Пекуров А.В., Слюсарев В.Д. Новые данные по геологии и маг-

- матизму синклинорной зоны Ветреного Пояса. Тр. Инст. геологии Карельского филиала АН СССР, 1967, вып. 1.
- Большев Л.Н., Смирнов А.В. Таблицы математи-ческой статистики. М., "Наука", 1965.
- Борисенко Л.Ф. Редкие и малые элементы в гипербазитах Урала, М., "Наука", 1966.
- Вистелиус А.Б. Мера связи между членами парагенезиса и методы ее изучения. - Зап. Всесоюзн. минер. общ., 1948, ч. 77, № 2.
- Вистелиус А.Б. Проблема изучения связи в минералогии и петрографии. Зап. Всесоюзн. минер. общ., 1956, ч. 85, вып. 1.
- Вистелиус А.Б. Проблемы математической геологии. Геология и геофизика, 1963, № 7.
- Вистелиус А.Б., Яновская Т.Б. Программирование задач геологии и геохимии при использовании универсальных электронных вычислительных машин. Геология рудных месторождений, 1963, № 3.
- Вистелиус А.Б. Задачи геохимии и информационные меры. Сов. геология, 1964, № 12.
- Дир У.А., Хауи Р.А., Зусман Дж. Породообразующие минералы. М., "Мир", 1965.
- Елисеев Э.Н. Геохимия главнейших сульфидных медноникелевых провинций СССР. - В кн.: "Проблемы геохимии", вып. 1. Львов, Изд-во Львовск, унив., 1959.
- 3 олотухин В.В. О природных процессах сульфуризации основных и ультраосновных пород. ДАН СССР, 1966, т. 167, № 3.
- И о дер X.С. Система Mg0- Al_2O_3 - SiO_2 - H_2O и соответствующие метаморфические фации. В кн.: Экспериментальные исследования в области петрографии и рудообразования. М., ИЛ, 1954.
- Крамер Г. Математические методы статистики. М., ИЛ, 1948.
- Кульбак С. Теория информации и статистика. М., "Наука". 1967.
- Малаков И.А. Петрохимия ультрабазитов Урала. Тр. 1 Уральского петрографического совещания, Свердловск, 1963.
- Плохинский Н.А. Биометрия. Новосибирск, Изд-во Сиб. отд. АН СССР, 1961.
- Саксела М. Происхождение руд Оутокумпу в свете тектоно-метаморфической мобилизации вещества. - В кн.: Новости зарубежной геологии, вып. 11. Л., ВСЕГЕИ, 1959.

- Сарманов О.В., Вистелиус А.Б. О корреляции между процентными величинами. ДАН СССР, 1959, т. 126, № 1.
- Сарманов О.В. О ложной корреляции между случайными величинами. Тр. Математ. инст. им. В.А.Стеклова АН СССР, т. 64, М., Изд-во АН СССР, 1961.
- Сарманов О.В. О применении математики в геологии. В кн.: Взаимодействие наук при изучении Земли. М., Изд-во АН СССР, 1963.
- Слюсарев В.Д. Классификация магматических образований синклинорной зоны Ветреного Пояса. ДАН СССР, 1967, т. 177, № 5.
- Слюсарев В.Д. К вопросу о классификации магматических образований синклинорной зоны Ветреного Пояса. -Тр. Инст. геол. Карельск. фил. АН СССР, 1968, вып. 1.
- Соболев Н.Д. К петрохимии ультраосновных горных пород. Геохимия. 1959. № 8.
- Тернер Ф., Ферхуген Дж. Петрология изверженных и метаморфических пород. М., ИЛ, 1961.
- Хальд А. Математическая статистика с техническими приложениями. М., ИЛ, 1956.
- Штейнберг Д.С. Новые данные о серпентинизации дунитов и перидотитов Урала. МГК, Докл. сов. геологов, Проблема 13. М., Изд-во АН СССР, 1960.
- Штейнберг Д.С. Основные черты петрологии интрузивных формаций Урала. Тр. 1 уральского петрографического совещания, Свердловск, 1963.
- Штейнберг Д.С., Малахов И.А., Булыкин Л.Д., Ефимов А.А., Лашнев И.М., Ча- щухин И.С. Итоги изучения серпентинизации ультрабазитов Урала. Тезисы докладов II уральского петрографического совещания, т. 2. Свердловск, 1966.
- Эдельштейн И.И. К геохимии никеля. Геохимия, 1960, Ne 7.
- Эскола П. Докембрий Финляндии. В кн.: Докембрий Скандинавии. М., "Мир", 1967.
- Chayes F. On correlation between variables of constant sum. J. Geophys. Res., 1960, v. 65.
- Chayes F. Numerical correlation and petrographic variation. J. Geol., 1962, v. 70, No 4.
 Gillery F.H. X-ray study of synthetic Mg-Al
- Gillery F.H. X-ray study of synthetic Mg-Al serpentines. Amer. Miner., 1959, v. 51, No 1 and 2.

- Grip E. Geology of the nickel deposit at Lainijaur in Northern Sweden and a summary of other nickel deposits in Sweden, - Sver, Geol. Under sökning, 1961, Ser. C. 557, Arcbok 55, No 1.
- Häkli A. Distribution of nickel between the silicate and sulphade phases in some basic inrusions in Finland. Bull. Comm. Geol. Finland, 1963, No 209.
- Hess H.h., Dengo G., Smith B.J. Antigotite from the vicinity of Caracas, Venezuela. -Amer. Miner., 1952, v. 37, No 1-2.
- Hostetler P.B., Coleman R.C., Mumpton F.A. and Evans B.W. Brusite in Alpine serpentinites. Amer. Miner., 1966, v. 51, No 1 and 2.
- Krauskopf K.B. The use of thermochemical data in defining conditions of high-temperature ore formation. - Symposium problems of postmagmatic ore deposition, v. 2, Praque, 1965.
- Kullerud G., Yoder H.S. Sulfide-silicate reactions and their bearing on ore formation under magmatic, post-magmatic and metamorphic conditions. Symposium problems of post-magmatic ore deposition, v. 103, No 2. Praque, 1965.
- Marmo V. Serpentinite of pahta-autsi, Finich Lapland. Bull. Comm. Geol. Finland, 1960, No 188.
- Montoya J.W. and Baur G.S. Nickelferous serpentines, chlorites and related mineral found in two lateritic ores. Amer. Miner., 1963, v. 48, No. 11-12.
- Osborn E.F. Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Amer. J.Sci., 1959, v. 257.
- Roy D.M. and Roy R. An experimental stady of the formation and properties of synthetic serpentines and related layer silicate minerals. Amer. Miner., 1954, v. 39, No 11-12.
- Thayer T.P. Serpentinization considered as a constant-volume metasomatic process. Amer. Miner., 1966, v. 51, No 5 and 6.
- Vogt J.H. Nickel in igneouns. rocks. Econom. Geol., 1923, v. 18.
- Vistelius A.B. Studies in mathematical geology. N.Y., 1967.
- Wilkinson J.E. Some aspects of the Alpine-Type serpentinites of Queenslan, Geol, Mag., 1953, v.XC, No 45,

ОГЛАВЛЕНИЕ

	Стр.
Предисловие	3
Глава 1. Постановка задачи и сведения о методике рабо-	
ты (К.И.Хейсканен, В.Д.Слюсарев)	4
 Информационный коэффициент корреляции 	6
§ 2. Эмпирическое корреляционное отношение	7
§ 3. Парные (общие) коэффициенты корреляции	9
§ 4. Оценки значимости корреляционного отношения и	
коэффициента корреляции. Критерий линейности	
связи	10
§ 5. Определитель матрицы парных коэффициентов кор-	
реляции	12
§ 6. Коэффициенты множественной регрессии и критерии	
их значимости	13
§ 7. Частные коэффициенты корреляции	15
§ 8. Множественный коэффициент корреляции	16
Глава II. Корреляционный анализ в изучении ги пербазитово-	
го комплекса района Ветреного Пояса (В.Д.Слюсарев)	18
§ 1. Характеристика гипербазитового комплекса	19
§ 2. Общие результаты статистического анализа	22
§ 3. Некоторые особенности процессов серпентинизации	23
§ 4. Генетические выводы корреляционного анализа	26
§ 5. Металлогеническая специфика	27
§ 6. Металлогеническая специфика с учетом результатов	
корреляционного анализа	29
§ 7. Геохимические особенности магматического и мета-	
морфического этапов	35
Заключение	40
Приложение 1. Программа корреляционного анализа (В.Л.Файн-	
берг. О.Л.Рукосуева, Ж.М.Стуйгуева)	41
Приложение 2. Проверка нормальности эмпирической функции	
распределения (К.И.Хейсканен, О.Л.Рукосуева)	72
Литература	90

КОРРЕЛЯЦИОННЫЙ АНАЛИЗ В ПЕТРОХИМИЧЕСКИХ ИССЛЕДОВАНИЯХ

Утверждено к печати Институтом геологии Карельского филиала АН СССР

Редактор издательства Т.Н.Токарева Художник Я.В.Таубвурцель Технический редактор В.В.Шиханова Корректор Ж.Д.Андронова

Сдано в производство и подписано к печати 28/II 1975 г. Формат бумаги 60 х 90 1/16. Бумага № 1. Печ. л. 6 = = 6.00 усл. печ. л. Уч.-изд. л. 5.81. Изд. № 5905. Тип. зак. № 219 . М-31423. Тираж 1350. Цена 58 коп.

Ленинградское отделение издательства "Наука" 199164, Ленинград, В-164, Менделеевская линия, д. 1

1-я тип. издательства "Наука". 199034, Ленинград, В-34, 9 линия, д. 12